Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

21/09/2017

Le Grand livre des volcans du monde

Le Grand livre des volcans du monde

 

Ce livre est le plus récent (mars 2010) ouvrage de Jacques-Marie Bardintzeff, un volcanologue averti :


Le grand livre des volcans du monde, séismes et tsunamis, Editions Orphie, 160 pages en couleur, 23,80 euros.

 

Couv_Volcans.jpg

 

L’auteur Jacques-Marie Bardintzeff est volcanologue, agrégé et docteur d'État, professeur à l'Université de Cergy-Pontoise et à l'Université Paris-Sud Orsay.

 

Volcans, séismes, tsunamis ont depuis les origines suscité la curiosité mais aussi la crainte des hommes. La peur qu’ils inspirent, leurs manifestations aussi soudaines que dévastatrices, la beauté des laves en fusion leur confèrent un mystère qui aiguise les passions.

 

Comment naissent, vivent et meurent les volcans ? Où sont-ils situés et à quoi ressemblent-ils ?

 

Comment prévenir leurs colères et mettre à profit leurs richesses ? Peut-on limiter les conséquences terribles des séismes et des tsunamis et quels moyens de protection doit-on mettre en œuvre pour s’en prémunir ?

 

Quelles sont, en France (métropole et Outre-mer) et ailleurs, les régions à risques ? Autant d’énigmes que ce voyage à travers les différentes régions du monde et jusqu’au centre de la Terre, tente d’élucider.


Spécialiste des risques naturels dans le monde,
Jacques-Marie Bardintzeff a écrit une grande quantité d’ouvrages et d’articles scientifiques et a collaboré à de nombreuses émissions de radio ou de télévision.

 

Les super volcans : Voir l'article de Futura-Science

 

01/11/2015

La disparition des dinosaures

La disparition des dinosaures

 

De la comète ou du volcan, lequel est responsable de la disparition des dinosaures, il y a 66 millions d'années ? Un double scénario catastrophe montre que les pauvres bêtes n'avaient décidément aucune chance de s'en tirer.

 

Jusqu'à présent, deux écoles "catastrophistes" s'affrontaient. Pour les uns, une chute d'astéroïdes était responsable de la crise biologique marquant la fin du crétacé. Pour les autres, il fallait incriminer les volcans. Il semblerait en fait que ce serait la combinaison du choc d'un astéroïde sur Terre et d'un regain du volcanisme qui explique leur extinction.

 

Déjà, en 1991, une théorie émanant de deux membres du Centre américain d'études géophysiques, établi en Californie, suggérait qu'il n'y avait pas un criminel unique : les deux phénomènes consécutifs auraient cause l'extinction des dinosaures, il y a 65 millions d'années. La communauté scientifique ne s'en était guère émue. En 1995, voilà que l'ordinateur vole au secours de la nouvelle hypothèse. Un physicien du laboratoire national Sandia, à Albuquerque (Nouveau-Mexique), a simulé l'impact terrestre d'une météorite de 10 km de diamètre. Selon ses calculs, l'onde de choc engendrée par la collision se serait répercutée en quatre-vingts minutes jusqu'aux antipodes, provoquant une éruption volcanique à grande échelle. La théorie pourrait être confortée par la découverte, en 1990, d'un cratère de 180 km de diamètre à Chicxulub, dans le Yucatàn au Mexique, diamétralement opposé aux "traps" du Deccan, en Inde, des structures géologiques en couches qui témoignent d'un formidable épanchement volcanique survenu à la limite du crétacé à la fin de l'ère secondaire et le début du tertiaire, c'est-à-dire au moment de la brusque disparition des dinosaures.

 

Cette théorie avait été alors mise en doute par Robert Rocchia, du Commissariat à l'énergie atomique et partisan de la théorie de la météorite : "L'activité volcanique de l'Inde a commencé au moins 500 000 ans avant que l'astéroïde ne vienne percuter la planète." Cet argument formulé à l'époque était insuffisant au regard de l'incertitude sur la datation des traps dont l'intensité maximale a duré un million d'années. Son autre objection était beaucoup plus solide. "Il y a eu une centaine de coulées successives. On n'a pas encore trouvé de traces d'une activité accélérée et qui pourrait être consécutive à un choc." Les scientifiques de la Nasa, ont, eux, écarté cette possibilité. Prenant en compte la tectonique des plaques, ils assurent qu'il y a 65 millions d'années, ce qui forme aujourd'hui l'Inde se trouvait... à 1600 km du point situé aux antipodes de Chicxulub.

 

Depuis vingt ans, les méthodes de datation se sont considérablement affinées et confirment le scénario élaboré par le Laboratoire national Sandia d'Albuquerque. "C'est la combinaison des deux phénomènes" qui a sonné le glas des dinosaures, conclut une étude américano-indienne — et non pas l'un ou l'autre. "Nos datations par la nouvelle méthode argon-argon ont permis de clarifier la succession des événements avec une précision plus de 20 fois supérieure à ce qui était possible il y a 5 ans", souligne le géophysicien Loÿc Vanderkluysen, de l'université Drexel (Philadelphie, États-Unis).

 

En frappant la Terre au Mexique il y a 66,043 millions d'années, un astéroïde a provoqué une accélération du volcanisme en Inde au cours des cinquante milliers d'années qui ont suivi l'impact. I.a collision aurait projeté un nuage obscurcissant et provoqué une phénoménale onde sismique. "L'équivalent d'un tremblement de terre de magnitude 11", assure le géologue Paul Renne, de l'université de Californie à Berkeley (États-Unis), "qui aurait perturbé la chambre d'alimentation des volcans". Les écoulements de lave, qui avaient démarré doucement 400 000 ans avant l'impact, ont plus que doublés ensuite. Et les volcans ont éructé des aérosols sulfurés, plongeant la Terre dans un long hiver meurtrier.

 

Dinosaures-Le-choc-450.jpg

L'impact de l'astéroïde dans le Yuccatan a provoqué un séisme très violent

qui a perturbé la chambre magmatique des volcans qui ont enregistré

un doublement de leur activité.

 

L'astéroïde frappe la Terre, dégageant un énorme nuage de poussières et de débris. Les ondes de choc se propagent autour de la planète et la courbe terrestre, agissant comme une lentille, focalise leur énergie aux antipodes. Un tel choc soulèverait l'écorce terrestre de plus de 100 mètres dans une série de secousses cataclysmiques, livrant le passage au magma et libérant nuages de poussières et émanations de gaz sulfurique. La perturbation atmosphérique qui s'ensuivrait occulterait le Soleil, provoquant une rupture écologique.

 

Sources :

Ewing R. (2015). — Asteroid Crash Kicked Off Mega-Volcano in the Process that Killed Dinosaurs.

Fléaux R. (1995). — Dinosaures : le cataclysme final, Sciences et Avenir, n° 577 mars 1995 p. 99.

Mulot R. (2015). — Les dinosaures n'avaient aucune chance, Sciences et Avenir, n° 825 novembre 2015 p. 20.

23/08/2014

Volcanologie par Jacques-Marie Bardintzeff

 

Volcanologie-Bardintzeff-200.jpgVolcanologie

 

par Jacques-Marie Bardintzeff, Volcanologue et Professeur à l’Université Paris-Sud

La volcanologie est une discipline qui évolue au fil des éruptions suite au travail des géologues, des géochimistes, des géophysiciens et des historiens. Cette quatrième édition actualisée tient compte des éruptions récentes et s'attache plus particulièrement aux nouvelles techniques de prévision et surtout au suivi de la gestion des éruptions volcaniques. Cet ouvrage, qui s'adresse aux étudiants de licence (L3) et de master (M1 et M2), ainsi qu'aux candidats aux concours du CAPES et de l'Agrégation, tient compte de la progression des connaissances en matière de volcanologie au cours des deux dernières décennies.
L'auteur décrit la « chambre magmatique » et les processus complexes qui s'y déroulent. Quatre types d'éruption sont ensuite envisagés : émission de lave, retombées, explosions dirigées et enfin volcanisme sous-marin. Il insiste sur l'approche physique des processus et sur leurs possibles modélisations.  L'analyse des principales éruptions de ces vingt dernières années jette un éclairage nouveau sur la prévention des risques volcaniques. L'aspect utile du volcanisme (métallogénie, géothermie, santé, loisirs, etc.) n'est pas oublié.  Cet ouvrage constitue une référence incontournable pour tous ceux qui s'intéressent aux volcans.

Édition Dunod – Collection Sciences Sup -  2011 (4ème édition) - 320 pages – 35,50€

Volcans du monde, séismes et tsunamis

Volcans-du-monde-200.jpgVolcans du monde, séismes et tsunamis

 

par Jacques-Marie Bardintzeff, Volcanologue et Professeur à l’Université Paris-Sud

Comment naissent, vivent et meurent les volcans ? Où sont-ils situés et à quoi ressemblent-ils ? Comment prévenir leurs colères et mettre à profit leurs richesses ? Peut-on limiter les conséquences terribles des séismes et des tsunamis ? Quelles sont les régions à risques ? Autant d'énigmes que ce voyage à travers les différentes régions du monde et jusqu'au centre de la Terre, tente d'élucider.

Éditions Orphie – Grands livres - 2e trimestre 2011 – 160 pages – 23,80€

24/12/2013

L'exploration du centre de la terre

L'exploration du centre de la terre


Tout le monde n'est pas Jules Verne : aujourd'hui comme hier, il est impossible de connaître directement l'intérieur de la planète. De sorte que nous avons moins d'information sur ce qui se trame sous nos pieds que sur les soubresauts des astres aux confins du cosmos. Car notre seul messager direct est la lumière. Or, aucun photon ne nous parvient de ces profondeurs alors que la lueur des galaxies lointaines, captée par de nombreux instruments d'observation, renseigne sur de grandes portions de l'Univers.

 

Creuser la Terre : mission impossible

 

On a bien pensé à effectuer des forages profonds comme celui qu'a entrepris en 1970 une équipe de scientifiques russes qui s'est lancée dans le premier et seul forage très profond de la croûte terrestre qui n'a d'ailleurs jamais pu aboutir.

 

Depuis la presqu'île de Kola, près de la ville de Zapoliarny (au Nord-Ouest de Mourmansk), l'objectif était d'atteindre au moins le « moho ». Cette frontière virtuelle, du nom du sismologue croate Andrija Mohorovicic, est une « discontinuité » située à la base de la croûte, entre 5 et 10 km sous les océans et entre 30 et 60 km sous les continents. La vitesse des ondes qui s'y propagent augmente brusquement, comme si les roches y changeaient de soudainement. Le moho sous la presqu'île de Kola, dotée d'une croûte océanique, était estimé à 15 km de profondeur. Mais après dix-neuf ans de forage, les travaux ont été stoppés en raison de l'effondrement de l'Union soviétique, à -12,262 km précisément. Le forage était devenu trop difficile : vers 7 à 8 km de profondeur, une série de failles avec circulation de fluide a rendu la poursuite des travaux onéreux. Par ailleurs, la température au fond du trou frôlait les 180°C au lieu de la centaine de degrés attendue. Malgré tout, des roches de plus de 2,7 milliards d'années ont été remontées. Mais aucun échantillon du cœur de la Terre...

Terre_05-sondage-450.jpg

 

Exploration des profondeurs par des méthodes indirectes


Pour accéder aux tréfonds de la planète, il faut donc employer des méthodes indirectes. Tout se passe comme si pour en deviner sa forme et sa constitution, nous frappons sa surface afin de la faire vibrer tout entier. Et c'est en écoutant attentivement sa manière de vibrer, grâce aux sismomètres qui enregistrent les mouvements du sol, qu'on peut en déduire sa forme et sa structure interne – une sphère creuse n'émettant pas le même son qu'une boule pleine. Ce sont les séismes de grande magnitude qui jouent le rôle de ces frappes : celui de Tohoku (Japon), survenu en mars 2011 – à l'origine de la catastrophe de Fukushima — a ainsi fait vibrer le sol... de la région parisienne distant de 9500 km.

 

Les sismographes ont enregistré un déplacement de quelque trois millimètres, soit un mouvement vertical et horizontal de 6 mm[1]. Or, avant de parvenir jusqu'à la France, les ondes sismiques parties du Japon se sont propagées à travers le noyau et le manteau de la Terre. Leur analyse, comme celle des ondes de chaque séisme, permet donc de reconstituer petit à petit le cœur de la planète : en effet, la vitesse des ondes sismiques varie selon la densité des roches qu'elles traversent. C'est ainsi que l'existence d'une croûte, d'un manteau supérieur, d'un manteau inférieur – tous les trois constitués de roches de densité différente – a été identifiée au cours du XXe siècle. « De même, certaines ondes sismiques, à l'origine de mouvements de cisaillement par exemple, ne peuvent traverser les liquides », rappelle Stéphane Labrosse, du Laboratoire de géologie de l'École normale supérieure de Lyon. L'absence partielle de ces ondes dans les enregistrements a permis au sismologue allemand Beno Gutenberg de conclure en 1912 que le noyau de la Terre était liquide. Puis la mathématicienne Danoise Inge Lehmann a analysé minutieusement en 1936 de nombreux sismogrammes pour déduire l'existence au sein de ce noyau liquide d'une graine solide[2].

 

Autres techniques : recréer les conditions dans le manteau


Liquide, solide, plus ou moins dense... Les ondes sismiques ne livrent aucune information sur les minéraux qui constituent le manteau. Bien sûr, les volcans se chargent de faire remonter vers la surface des roches du manteau. Mais la lave qui sort des cheminées volcaniques n'est plus dans le même état que les roches solides du manteau. D'où l'idée de reconstituer en laboratoire les conditions qui règnent dans les profondeurs du globe et d'y soumettre des échantillons de lave, par une technique utilisée depuis le milieu des années 1970 par les physiciens.

 

Pour ce faire, leur instrument fétiche s'appelle la « presse à enclumes de diamant ». Son principe : reproduire les pressions qui règnent dans le manteau en enserrant l'échantillon entre deux enclumes en diamant. Seule la dureté de cette pierre précieuse permet en effet de résister à des pressions qui vont de 30 gigapascals (GPa) et que l'on retrouve dans le manteau à 700 km de profondeur — soit 300 000 fois la pression atmosphérique — à 135 GPa à 2900 km, à la frontière du noyau, soit un million de fois la pression atmosphérique. Parallèlement, un faisceau laser vient chauffer 1 échantillon jusqu'à 2000°C. Celui-ci ainsi trituré, comprimé et grillé ressort comme le digne représentant du manteau de la Terre.

Reste à l'analyser aux rayons X pour visualiser l'emplacement des atomes dans la roche. C'est ainsi que les géophysiciens ont compris la différence entre le manteau supérieur et le manteau inférieur. Les mêmes composants chimiques cristallisent différemment en minéraux de plus en plus denses.

 

Un scénario audacieux révélé par une expérience inédite

 

La première expérience d'analyse de magma à très haute pression, par rayons X conforte l'hypothèse d'une Terre primitive à deux océans de magma superposés.

terre-primitive_c-sanloup1_250.jpg

© Christèle Sanloup (Istep CNRS/UPC)

 

Une équipe européenne (Allemagne, France, Pays-Bas, Royaume-Uni) dirigée par Chrystèle Sanloup de l’Institut des Sciences de la Terre Paris (iSTeP, UPMC/CNRS) a révélé des changements de structure au sein de basaltes fondus à des pressions équivalentes à 1400 kilomètres de profondeur. Cette expérience confirme ce qui avait été suggéré en 2007 : Dans un passé lointain, il y a plus de 3,5 milliards d'années, notre planète aurait renfermé en son sein deux océans de magma séparés par une couche rocheuse. La surface du premier se situe sous 200 à 300 kilomètres de roches depuis la croûte terrestre à une profondeur avoisinant les 400 km, soit 50 fois plus que les plus profondes fosses marines. Sous le plancher de ce premier océan magmatique à 600 ou 700 km de profondeur, se situerait une couche rocheuse cristalline dense sur 300 ou 400 km s'étendant jusqu'à -1000 km. Là, on retrouverait du magma liquide jusqu'à -2900 km de profondeur. En proposant ce scénario à deux étages d'océans, jamais les profondeurs terrestres n'avaient été ainsi pensées[3].

 

Mais l'équipe est allée plus loin. Au lieu d'utiliser un échantillon de lave refroidi et solide, comme c'était toujours le cas jusqu'alors, elle a eu l'idée de tester du magma. « D'une certaine manière, le magma est plus proche de l'état de la roche telle qu'elle était dans le manteau avant de remonter à la surface », explique Chrystèle Sanloup. Une vraie prouesse technique ! Maintenir de manière stable un liquide entre les mâchoires de la presse n'est pas aisé. Sans compter que les atomes d'un liquide sont désorganisés par rapport à ceux d'un solide. Les chercheurs ont donc dû faire appel à l'une des sources de rayons X les plus puissantes au monde, Petra III, située dans l'installation DESY, près de Hambourg (Allemagne). « Notre surprise a été de constater qu'au fur et à mesure que l'on soumettait le magma à des pressions élevées, sa densité augmentait, mais pas de la même manière que celle de la roche du manteau, explique Crystèle Sanloup. À faible profondeur, le magma flotte sur la roche, mais autour des pressions qui correspondent à 660 km de profondeur, le magma devient plus dense que les cristaux, donc les roches flotteraient sur cet océan de magma... » Ce qui a permis à l'équipe d'imaginer cet épisode surprenant du passé de la Terre, il y a plus de trois milliards d'années, lorsque son intérieur était en grande partie fondu : quand le magma liquide dominait, il a donc pu comporter deux océans superposés.

terre-primitive_c-sanloup2_450.jpg

Échantillon de basalte après manipulation mais toujours dans une cellule à enclumes-diamant (à 35 GPa, on voit trois billes de magma, correspondant à trois spots de chauffage laser, chacun faisant environ 20 microns de diamètre). Sanloup et al. Nature 2013.


Cette étude montre que le nombre de coordination de silicium - son nombre d'atomes voisins -dans les magmas passe de 4 à 6 quand la pression augmente de 10 GPa et 35 GPa. Leur densité passe d'environ 2,7 grammes par centimètre cube (g/cm³) à basse pression, à près de 5 g/cm³ à 60 GPa. Ainsi jusqu’à 25 GPa, soit 660 km , les magmas deviennent progressivement plus denses que les cristaux, qui vont donc flotter et non sédimenter. Une fois le nombre de 6 atomes voisins atteint dans les magmas, soit vers 35 GPa, cette densification devient beaucoup moins notable. C'est ainsi que ce différencient manteau supérieur et inférieur de part et d'autre de la limite de 600 km.

 

Le changement de structure des magmas avec la profondeur affecte également leurs propriétés chimiques. En effet, les auteurs remarquent que ce changement de structure coïncide avec un changement dans la façon dont des éléments sidérophiles (“qui aiment le fer”), tels le nickel, se répartissent entre magma et fer liquide. Par définition, les éléments sidérophiles se concentrent dans le fer liquide, mais cette concentration est de plus en plus faible à mesure que la pression augmente. Cette forte dépendance en pression en fait de bons marqueurs potentiels de la pression/profondeur d’équilibre entre océan magmatique et noyau métallique. Au-delà de 35 GPa par contre, leur répartition entre magma et fer liquide est peu affectée par la pression.

 

Pour les auteurs, le comportement plus dense du magma basaltique à une certaine profondeur, permet d’envisager un océan magmatique stratifié dans l'intérieur de la Terre primitive, comme l'ont déjà proposé certains modèles sur la base de calculs d’évolution thermique (refroidissement) de la Terre primitive. Très tôt après leur formation par accrétion de fragments solides, les planètes telluriques sont passées par un état fondu. Épisode qualifié “d'océan magmatique”. La cristallisation de minéraux à partir du magma a commencé à se produire entre probablement environ 660 et 1000 km de profondeur, là ou les cristaux sont en quasi-équilibre gravitaire avec le magma, séparant l'océan magmatique initial en deux océans superposés, qui se sont solidifié à leur tour ne laissant subsister que quelques poches de magma résiduel à la base du manteau inférieur. C’est du moins ce que pensent avoir repéré les sismologues en ayant localisé des zones où les sismiques se propagent à de très faibles vitesses.

 

Terre_01-450.jpg

Terre_02-450.jpg

Terre_03-450.jpg

 

Depuis quelques années, les spécialistes des tremblements de terre qui analysent les vibrations du globe font face à une énigme connue sous le nom de « ULVZ » (Ultra Low Velocity Zone, zone à très faible vitesse) qui pourrait des lors se trouver éclairée par cette configuration passée de la Terre. « Lorsque l'on analyse la vitesse des ondes sismiques enregistrées par nos réseaux de sismomètres en surface, tout se passe comme si les ondes qui provenaient de deux régions bien précises — 2900 km sous l'Afrique du Sud et sous le Pacifique présentaient des anomalies : elles s'y propagent bien plus lentement qu'ailleurs, jusqu'à 30 % moins vite. » Or les sismologues le savent bien : les régions chaudes du manteau dissipent l'énergie des ondes sismiques, ce qui fait drastiquement baisser leur vitesse. D'où cette hypothèse très séduisante qu'ils envisagent désormais : à la base du manteau, à 2900 km sous nos pieds, persisteraient les vestiges de ces anciens océans de magma au sein d'un manteau totalement rocheux. En somme, des régions de magma liquide d'une centaine de kilomètres de large, ralentissant les ondes sismiques, seraient encore à l'œuvre. Ce qui expliquerait aussi qu'en surface, à l'aplomb de ces ULVZ, se trouvent deux des plus gros chaudrons du monde dont la lave proviendrait de ces vestiges : les îles Hawaii et les îles Samoa.

Terre_04-450.jpg

 

Sources :


  • Structural change in molten basalt at deep mantle conditions, Chrystèle Sanloup, James W. E. Drewitt, Zuzana Konôpkova´, Philip Dalladay-Simpson, Donna M. Morton, Nachiketa Rai, Wim van Westrenen & Wolfgang Morgenroth Nature 7 novembre 2013.
  • Au cœur de la Terre primitive, Azar Khalatbari Sciences et Avenir n° 803 – janvier 2014 pp. 36-39).
  • Pour en savoir plus :

http://www.insu.cnrs.fr/node/4592?utm_source=DNI&utm_...

 



[1] sciav.fr/1adbfXz

[2] sciav.fr/1b0Qp1W

[3] Nature du 7 novembre 2013

 

La suite dans l'article "Structure du globe terrestre".

10/12/2013

La Soufrière de Guadeloupe sondée par rayons cosmiques

soufriere_guadeloupe_juin 2008_logo.jpgLa Soufrière de Guadeloupe sondée par rayons cosmiques


par Nolwenn Lesparre[1], Dominique Gibert[2]

et Jacques Marteau[3]

(Pour la Science n° 434, décembre 2013 pp. 44-51)


Prévoir les éruptions volcaniques reste un défi pour les scientifiques. Une nouvelle méthode appliquée à la surveillance de la Soufrière de Guadeloupe : la radiographie par les muons cosmiques une solution qui permet de radiographier l'intérieur des volcans ?

 

(Pour la présentation de la Soufrière voir les articles La Soufrière de Guadeloupe et La Soufrière de Guadeloupe et ses séismes dans ce même blog)


 

Parmi les différents scénarios d'éruptions envisageables pour la Soufrière, on peut craindre un effondrement du dôme, une éruption phréatique ou une remontée de magma. Risque-t-on une explosion du type de celle de 1980 au Mont Saint-Helens, comme cela s'est déjà produit il y a quelque 3 000 ans ? Pour prévoir ces événements de façon fiable et suffisamment à l'avance pour évacuer les populations concernées, les volcanologues disposent de diverses méthodes pour ausculter le volcan et essayer de prévoir quand surviendra un tel événement et quelle en sera la violence. Une nouvelle méthode a été expérimentée à la Soufrière : la radiographie par les muons cosmiques.

 

Soufrière-450.jpg

La Soufrière de Guadeloupe

 

En quoi consiste la méthode ?


Elle n'est pas sans rappeler la radiographie aux rayons x. Ces derniers traversent l'organisme, sont plus ou moins absorbés par les tissus et les os qu'ils rencontrent sur leur passage, et nous donnent des images de l'intérieur du corps humain, liées à cette absorption variable. De même, les rayons cosmiques traversent la matière. Serait-il possible d'observer les entrailles des volcans au moyen de ces rayons cosmiques, plus ou moins absorbés par la matière qu'ils traversent ? L'idée fut proposée au milieu des années 1960 par l'équipe de Luis Alvarez (1911-1988), lauréat du prix Nobel de physique en 1968 : il suggéra d'utiliser les rayons cosmiques pour ausculter la grande pyramide de Khéphren et y rechercher la chambre de la Reine.

 

Découverts en 1912 par le physicien américain d'origine autrichienne Victor Hess, les rayons cosmiques arrivant sur Terre sont constitués d'une « pluie » de particules produites par les rayons cosmiques primaires qui bombardent l'atmosphère terrestre. Les particules produites dans ces «cascades» sont de natures variées : électrons et photons, entre autres, mais aussi muons. Le muon est une particule élémentaire qui a les mêmes propriétés que l'électron, si ce n'est qu'il est instable (sa durée de vie est égale à 2,2 microsecondes) et que sa masse est environ 200 fois supérieure (206,8 fois précisément). Les muons sont parfois surnommés électrons lourds. Ce sont ces muons qu'utilisa l'équipe d'Alvarez pour « voir » à travers les épaisses parois de la pyramide.

 

C'est au milieu des années 1990 que l'équipe japonaise de Kanetada Nagamine eut l'idée d'utiliser les muons cosmiques pour ausculter les volcans. Depuis, les détecteurs de particules ont été notablement améliorés, ce qui a conduit plusieurs équipes à s'intéresser à la radiographie des volcans à l'aide des muons. Avoir accès à de telles images permettrait de suivre l'évolution des entrailles des volcans et, par exemple, de détecter une remontée de magma ou l'apparition de poches de vapeur avant toute manifestation visible.

 

Parmi ces équipes, le groupe Diaphane réunit des géophysiciens et des physiciens des particules de l'Institut de physique du Globe de Paris, de l'Institut de physique nucléaire de Lyon et du laboratoire Géosciences Rennes. Cette équipe mène des expériences sur plusieurs volcans aux Philippines, sur l'Etna et aux Antilles, où elle s'intéresse surtout à la Soufrière, surveillée en permanence par l'équipe de l'Observatoire volcanologique de Guadeloupe.

 

Rappelons que ce volcan subit des éruptions phréatiques, c'est-à-dire l'expulsion violente de grands volumes d'eau sous forme de panaches de vapeur. L'accès du volcan est difficile car le sommet (1 467 mètres) est entouré d'une forêt tropicale dense jusqu'à 1 100 mètres d'altitude dans un relief abrupt. Les pluies tropicales abondantes sont accompagnées de fortes rafales, toutes conditions qui rendent la surveillance difficile. Dès lors, la tomographie par rayons cosmiques présente l'intérêt théorique de suivre les entrailles du volcan sans avoir à l'escalader. Restait à démontrer la faisabilité de la méthode et sa fiabilité.

 

Les muons, que nous avons déjà mentionnés, sont produits à une quinzaine de kilomètres d'altitude lors des collisions entre les rayons cosmiques primaires et les atomes de l'atmosphère. Les particules primaires résultent de phénomènes astrophysiques violents, telles les explosions d'étoiles en supernovae, au cours desquelles elles sont accélérées. Les plus énergétiques détectées à ce jour ont une énergie d'environ 3,2 x 1020 électronvolts, c'est-à-dire plus que les plombs d'une carabine à air comprimé !

 

Lorsqu'elles pénètrent dans l'atmosphère, ces particules heurtent les molécules d'air. Sous le choc, de nouvelles particules sont libérées et se désintègrent à leur tour. Une cascade de désintégrations conduit à une averse de particules, nommée gerbe atmosphérique. Certains observatoires – HESS2, en Namibie, ou l'Observatoire Pierre Auger, en Argentine – sont consacrés à l'étude de ces phénomènes.

 

Les muons représentent cinq pour cent des milliards de particules qui constituent une gerbe atmosphérique. Leur énergie est comprise entre quelques dizaines et quelques milliers de gigaélectronvolts. Ils se déplacent à une vitesse proche de celle de la lumière dans le vide, ce qui allonge considérablement leur durée de vie apparente grâce à des effets relativistes. Cela leur permet de traverser l'atmosphère et d'atteindre le sol. Aux énergies considérées, les muons interagissent essentiellement par ionisation des atomes de la matière qu'ils traversent.

 

Les muons que... presque rien n'arrête

 

La perte d'énergie est approximativement constante et d'environ deux mégaélectronvolts par centimètre d'eau traversée. L'atmosphère ayant une épaisseur équivalant à dix mètres d'eau, les muons perdent deux gigaélectronvolts pour parvenir jusqu'au sol.

 

Les muons ne s'arrêtent pas en touchant le sol. Ils traversent la matière, où ils perdent de l'énergie plus rapidement que dans l'air. Si leur énergie est suffisamment grande et l'obstacle pas trop dense, ils peuvent le traverser de part en part. Si la densité de l'obstacle est trop élevée, ils sont arrêtés. On retrouve ici le principe de la radiographie aux rayons x, et on peut l'appliquer à la radiographie (ou tomographie) de l'intérieur d'un volcan. On mesure l'atténuation du flux de muons cosmiques produite par le volcan. L'atténuation augmente avec la quantité de matière traversée ou plus précisément l'opacité, c'est-à-dire le produit de la densité moyenne par la longueur du trajet dans le volcan.

 

Radiographie-du-volcan-par-muons-450.jpg

Principe de la radiographie des montagnes par les muons

(Pour zoomer, cliquer sur l'image)

 

Le principe décrit, comment procède-t-on en pratique ? On dispose d'un détecteur de particules – également nommé télescope, car on observe des rayons cosmiques – placé au pied du volcan et qui enregistre un flux de muons. Le télescope utilisé à la Soufrière est robuste, résistant aux variations de température, insensible aux pluies tropicales et aux ouragans. Il est également léger et maniable, transportable par hélicoptère et déposé sur des pentes escarpées. Deux ou trois personnes peuvent l'installer. Un vérin hydraulique et une base rotative permettent de modifier l'orientation du télescope et de l'ajuster avec précision. Il est alimenté par des panneaux solaires, une éolienne ou une pile à combustion.

 

Détecteurs-du-télescope-450.jpg

Le détecteur de particules ou télescope

 

 Le télescope est équipé de barreaux scintillants arrangés en deux séries perpendiculaires, de façon à former un damier constituant une matrice. Un télescope comporte au minimum trois matrices de 256 pixels de 25 centimètres carrés permettant de détecter les muons provenant de 961 directions différentes. La résolution angulaire est adaptée en ajustant la distance entre les matrices.

 

Lorsqu'une particule chargée traverse un barreau, la matière est ionisée et émet des photons avant de revenir à son état initial. L'énergie perdue par l'ionisation d'un muon produit entre 15 000 et 20 000 photons ultraviolets. Une fibre optique, collée au cœur du scintillateur, capture une partie de ces photons et les guide vers un photomultiplicateur qui produit une impulsion électrique. Ainsi, les muons produisent des photons que le photomultiplicateur convertit en électrons, signal électrique amplifié et mis en forme par un système électronique adapté de l'expérience OPERA (dédiée à l'étude des particules élémentaires nommées neutrinos). Les horloges utilisées pour repérer le passage de chaque muon ont une précision de quelques dizaines de picosecondes. Un ordinateur central collecte les informations provenant des différentes matrices et, dans le cas de la Soufrière, les transmet à l'observatoire volcanologique situé à une dizaine de kilomètres du volcan. Cela permet de mesurer un flux de muons en temps réel et de détecter d'éventuelles variations dues à des changements de conditions à l'intérieur du massif.

 

Le flux de muons décroît quand l'opacité augmente, et la mesure de son atténuation reflète les variations de densité à l'intérieur de l'objet sondé. Pour modéliser les variations de densité dans le volcan, nous résolvons ce que l'on nomme un problème inverse, méthode qui nous permet de déduire l'opacité du volcan du flux de muons l'ayant traversé. La tomographie par analyse du flux de muons nous donne des images de densité avec une résolution d'une vingtaine de mètres.

 

Comment calibrer le détecteur

 

Toutefois, restent encore plusieurs difficultés à résoudre : comment calibrer le détecteur pour obtenir une image de résolution optimale ? Comment évaluer la durée minimale d'enregistrement des données? Et comment déduire du flux de muons enregistré les variations d'opacité du volcan ? D'abord, il est important d'estimer le flux de muons observables, afin d'ajuster la configuration du détecteur.

 

Mais le calcul du flux de muons traversant une montagne nécessite de connaître approximativement la répartition des densités dans cet objet. Pour ce faire, on utilise les connaissances accumulées au fil du temps par les géologues. Bien sûr, on ignore les détails de l'anatomie du volcan, mais l'activité de la Soufrière est suivie depuis longtemps, ses failles et sa cheminée ont été explorées par divers moyens, de sorte que l'on a une idée de la répartition des masses en son sein.

 

Partant de ces données obtenues par d'autres méthodes, on estime le flux en fonction de la position du télescope par rapport à l'objet, de son orientation et de sa configuration. On peut alors évaluer les épaisseurs de roche traversées par les muons pour chacun des angles de vue du télescope. Ces épaisseurs sont ensuite converties en opacité, caractéristique qui détermine le seuil d'énergie minimale nécessaire aux muons pour traverser l'objet sans être absorbés. Le flux de muons détectables correspond alors au flux de muons arrivant à la surface du volcan et dont l'énergie est suffisante pour qu'ils puissent en ressortir.

 

Les radiographies de la Soufrière

 

Qu'avons-nous observé ? De nombreux signes témoignent de l'activité actuelle du volcan : des fractures, des fumerolles, le lac d'acide du gouffre Tarissan et des zones altérées par le système hydrothermal. Nous avons installé notre télescope successivement en trois endroits à l'Est, au Sud et à l'Ouest du volcan. Le fait d'avoir plusieurs points de vue permet de valider l'analyse des données.

 

Les radiographies montrent des zones de très faible densité dans la partie supérieure du volcan ; elles sont associées à la zone active du cratère Sud (nommées rf2 et rs4) et indiquent la présence d'un réseau de cavités (voir le schéma ci-dessous). Elles révèlent aussi une région peu dense (rf4) à la base du dôme, pouvant correspondre à la présence de roches altérées par les fluides hydrothermaux. Les régions de densité plus élevées (par exemple rf1 et rf5) révèlent l'existence de roches non altérées, en particulier de l'andésite mise en place lors de la formation du dôme. Des régions de densités intermédiaires (rf3) correspondraient à des barrières rocheuses localisées entre les réservoirs hydrothermaux.

Densité-moyenne-de-la-Soufrière-450.jpg

 

Nos radiographies présentent une bonne résolution spatiale. Elles ont été comparées à des images obtenues à l'aide d'autres méthodes géophysiques : les différentes images révèlent des structures similaires à l'intérieur du volcan. Par exemple, une tomographie électrique avait été effectuée à travers le dôme, apportant des informations sur les structures superficielles. Ce type d'images est sensible à la présence de fluides conducteurs et révèle les passages où les fluides du système hydrothermal circulent. Cependant, la résolution spatiale de la méthode n'atteint pas celle de la tomographie par analyse du flux de muons.

 

Radiographie-de-la-Soufrière-par-muons-450.jpg

 

Après la réalisation de ces deux radiographies, le télescope est resté installé pendant plusieurs mois sur le même site. Durant ce suivi, nous avons enregistré une augmentation du flux de muons à travers certaines zones du volcan, où l'écran rocheux est tel que seuls les muons de haute énergie le traversent. Or, quand on fait la moyenne du flux de ces muons sur quelques jours, on constate qu'il est constant. Si l'on observe une augmentation du flux, c'est nécessairement que la densité du milieu a diminué.

 

En effet, la région concernée correspond à un site où des fumerolles présentent un regain d'activité. Par conséquent, il est possible qu'à la suite d'une réorganisation de la circulation des fluides à l'intérieur de l'édifice, les roches de la région étudiée se soient appauvries en eau. Cette observation, qui doit être confirmée par des mesures indépendantes, montre l'intérêt de la tomographie par muons pour la surveillance des volcans en continu.

 

Une surveillance en continu

 

Ainsi, l'installation d'un télescope sur les flancs de la Soufrière de Guadeloupe a permis de montrer qu'un détecteur adapté au milieu tropical fournit des radiographies intéressantes des entrailles du volcan. La méthode permet de distinguer les hétérogénéités à l'intérieur de l'édifice. Les nouvelles données accumulées devraient permettre de concevoir des modèles plus précis de l'évolution du volcan. Un suivi régulier de cette évolution devrait révéler les changements internes d'opacité. Géophysiciens et volcanologues pourront-ils alors prévoir d'éventuelles éruptions ? C'est bien sûr ce que nous espérons.

 

Cette expérience a été réalisée sur un volcan de type explosif, mais elle est aussi applicable à des volcans de type effusif, tel l'Etna. Quel que soit le type éruptif d'un volcan, il présente des structures internes plus ou moins denses liées à la présence de cavités, d'une colonne éruptive, de roches massives ou de cendres et de ponces... Nous l'avons souligné, le télescope utilisé à la Soufrière offre de nombreux avantages (résistant, manipulable, précis, etc.), et la méthode permet de tomographier à distance des volcans dangereux, par exemple la Soufrière Hills de Montserrat. Toutefois, la tomographie par muons présente un inconvénient : elle n'est pas applicable partout.

 

Cette technique est bien adaptée au dôme de la Soufrière, qui a un diamètre de l'ordre du kilomètre et dont les pentes sont abruptes. Le flux de muons est suffisant pour obtenir en un mois une série de données exploitables. En revanche, un volcan de type bouclier comme le Piton de la Fournaise, à la Réunion, est moins adapté, car sa base est large de plusieurs kilomètres et ses pentes sont plus douces.

 

Dès lors, le flux de muons est fortement atténué par l'épaisseur de la roche, et il faudrait recueillir les données durant plusieurs mois, voire quelques années, pour commencer à distinguer les structures internes. Lors de l'expérience que nous avons réalisée sur l'Etna, volcan culminant à 3 300 mètres d'altitude, nous avons dû limiter notre étude à l'un des cratères sommitaux, le cratère Sud-Est, dont les dimensions sont comparables à celles de la Soufrière de Guadeloupe.

 

La tomographie par muons serait-elle applicable à d'autres objets que les volcans ? Oui, à condition de pouvoir aligner le flux de muons cosmiques, l'objet et le détecteur. D'autres applications sont envisageables, et un télescope a récemment été installé dans le laboratoire souterrain de l'Institut de radioprotection et sûreté nucléaire, IRSN, à Tournemire, pour caractériser les roches présentes au-dessus des galeries.

 

De la Soufrière au suivi des nappes phréatiques

 

La méthode pourrait servir à caractériser le milieu recouvrant des sites de stockage géologique ou à évaluer des ressources minières. Les mesures effectuées en continu sur la Soufrière ont également montré la possibilité d'observer des variations de densité. La méthode permettrait aussi d'évaluer les dimensions de nappes phréatiques et de suivre leurs fluctuations, ou encore de surveiller les sites de stockage de dioxyde de carbone. Cette toute jeune méthode devrait trouver de nombreuses applications !

 

La Soufrière de Guadeloupe est un volcan actif, qui est déjà entré en éruption à diverses reprises. En radiographiant ses entrailles à l'aide de muons, pourrait-on mieux prévoir les risques potentiels ?

 

Pour en savoir plus :


N. Lesparre et al., Density muon radiography of La Soufrière of Guadeloupe : First results and comparison with other tomography methods, Geophys. J. Int., vol. 190, pp. 1008-1019, 2012.

J. Marteau et al., Muons tomography applied to geosciences and volcanology, Nucl. Instrum. Methods A, vol. 695, pp. 23-28, 2011.

N. Lesparre et al., Geophysical muon imaging : feasibility and limits, Geophys. J. Int., vol. 183, pp. 1348-1361, 2010.

J. Paul et J.-L. Robert-Ésil, Le roman des rayons cosmiques, Ellipses, 2009.

P. De Wever et al., Le volcanisme cause de mort et source de vie, Vuibert, 2003.

 

arc antillais,volcanisme,éruption volcanique,éruption phréatique,soufrière de guadeloupe,radiographie par muons cosmiques

Ouvrage de 248 pages aux Éditions universitaires européennes (9 novembre 2011)

ISBN-10: 3841780857 ISBN-13: 978-3841780850



[1] Nolwenn LESPARRE est géophysicienne à l'Institut de radioprotection et de sûreté nucléaire, à Fontenay aux Roses. Elle a été lauréate du Prix Le Monde de la recherche universitaire 2012.

[2] Dominique GIBERT est géophysicien à l'Institut de physique du Globe de Paris et professeur à l'Université de Rennes 1. Il coordonne le projet DIAPHANE.

[3] Jacques MARTEAU est physicien des particules à l'Institut de Physique nucléaire de Lyon. Il a travaillé sur les expériences neutrinos OPÉRA et t2k.

10/04/2013

L'Etna en éruption

L'Etna en éruption

 

Actuellement, l'Etna est en éruption. Voir le spectacle sur les webcams :

http://www.ct.ingv.it/it/webcam-etna.html

02/03/2013

L'Arc du Jura sous surveillance GPS

L'Arc du Jura sous surveillance GPS


Six stations permanentes vont mettre le Jura sous couverture GPS pour observer la déformation tectonique de la chaîne, en continu et sur le long terme.


Si la chaîne du Jura donne lieu depuis longtemps à des études portant sur les millions d'années de sa formation géologique, la période actuelle de son histoire récente demeure une zone d'ombre pour laquelle les scientifiques ne disposent que de peu d'outils d'analyse.

 

Savoir de quelle façon et dans quelle mesure se déforme le Jura aujourd'hui sera bientôt possible grâce à l'installation de stations GPS à des endroits stratégiques de la chaîne. Piloté par le laboratoire Chrono-environnement de l'université de Franche-Comté, ce projet d'observation géophysique devrait donner ses premières conclusions dans une dizaine d'années. Ces données seront précieuses notamment pour comprendre l'activité sismique de la région, qui, bien qu'elle soit relativement faible, nécessite d'être suivie : des tremblements de terre sont régulièrement enregistrés et des failles fracturent la croûte terrestre sur l'ensemble de l'Arc jurassien.

 

sismographie,arc jurassien,jura,sismologie,surveillance gps Une déformation mesurée au millimètre


C'est la compression alpine qui a donné au Jura sa forme de croissant et sa morphologie caractéristique en plis et chevauchements, un objet emblématique pour les scientifiques qui n'ont pas manqué de l'étudier abondamment. Aujourd'hui, la tectonique alpine plutôt décro-extensive n'aurait plus d'influence directe sur la déformation du Jura. « Pour autant, la relative faible épaisseur de la croûte, de l'ordre de 30 km, et un relief ne dépassant pas 2 km donnent à penser que le Jura bouge avec sa dynamique propre », estime Christian Sue, enseignant-chercheur en géosciences à l'université de Franche-Comté, et porteur du projet GPS-Jura. L'observation GPS en continu permettra de mesurer le moindre de ses mouvements de manière très précise, de l'ordre du millimètre, voire du dixième de millimètre par an, une échelle apparemment infime mais significative pour ce type de chaîne orogénique lente.

 

Le Jura rejoindra donc les Alpes et le Bassin rhénan dans le réseau RENAG (Réseau national GPS permanent) qui, constitué de laboratoires de recherche et d'organismes publics, a pour tâche la mesure et l'exploitation des données GPS en continu. « On recherche le dixième de millimètre de déformation, une précision d'autant plus contraignante qu'elle s'inscrit dans la durée. » Les stations seront donc installées sur des terrains très stables, et les antennes de réception sur des piliers ancrés à la roche. De la qualité de l'antenne dépend bien sûr celle de mesures captées à haute fréquence (30 secondes) pour une réelle observation en continu.

 

Les six stations devraient progressivement être installées à partir du milieu de l'année 2013 et le réseau finalisé fin 2014. Se rapprochant au maximum d'une configuration idéale « en croix », elles permettront l'analyse de la déformation de surface de la chaîne, de sa compression ou de son extension le long de l'Arc, tout comme la détection éventuelle de mouvements sur les failles majeures du massif. Répondant à des objectifs scientifiques précis doublés d'importants enjeux sociétaux, le projet GPS-Jura est mené avec le concours de la Région Franche-Comté, dont le financement de 83 000 euros sur deux ans permet l'achat et l'installation des stations. Les données recueillies seront traitées et gérées selon des techniques éprouvées à l'Observatoire de Besançon, puis mises à disposition de la communauté scientifique via le serveur de données du RENAG.

 

sismographie,arc jurassien,jura,sismologie,surveillance gps

En 1996, le séisme d'Épagny en Haute-Savoie, de magnitude 5 sur l'échelle de Richter et d'intensité VII sur l'échelle MSK, rappelle brutalement l'existence de la faille du Vuache. Située au sud de l'Arc jurassien, cette faille réputée faiblement active est responsable, outre l'épisode d'Épagny, de plusieurs séismes plus modérés au cours du XXe siècle.

 

Plus loin de nous, le tremblement de terre de Bâle fait des ravages en 1356, détruisant la ville et propageant ses effets jusqu'à Reims et à l'opposé Constance. Il aurait pour point de départ une faille chevauchante du front nord du Jura. Bien que cette théorie ait été remise en cause par de récentes études, il n'en reste pas moins que les failles du Jura peuvent engendrer des catastrophes sismo-telluriques et appellent à une surveillance vigilante. C'est l'un des objectifs du réseau GPS prochainement mis en place sur l'Arc jurassien : la prise de mesure des mouvements et des déformations englobera l'activité des failles majeures de l'Arc, qu'elles traversent radialement en éventail resserré. La plus grande est sans doute la faille de Pontarlier, qui, présentant une brèche de 50 km de long dans la couverture sédimentaire du Jura, a permis historiquement de relier Lausanne à Besançon par la route.

 

Contact: Christian Sue - Laboratoire Chrono-environnement - Université de Franche-Comté

Tél. (0033/0) 3 811 66 61 23 - christian.sue@univ-fcomte.fr

 

Source : En Direct, le journal de la recherche et du transfert de l'Arc jurassien, n° 247 – mars-avril 2013.

29/05/2012

Recrudescence de séismes

séisme-sumatra-logo.jpgDes séismes en série

 

par Boris Bellanger (Sciences & Vie juin 2012)

 

Depuis 1900, la Terre a connu une première série de séismes de magnitude supérieure à 8,5 entre 1950 et 1965, puis une seconde série depuis 2004, et aucune entre ces deux périodes. D'après David Perkins, statisticien de l'USGS (Institut d'Études Géologiques des États-Unis), cette succession de séismes majeurs a peu de chance d'être le fruit du hasard. Une hypothèse contestée…

Au cours de cette seconde vague, quatre mégaséismes ont ravagé la planète en huit ans :

 

Sumatra, décembre 2004


Avec 280 000 morts, le premier mégaséisme de la série en cours entraîne une véritable hécatombe. Troisième séisme le plus puissant jamais enregistré, il touche l'océan Indien le 26 décembre 2004. De l'épicentre, situé à 200 km dans le nord-ouest de Sumatra, partent des vagues dévastatrices pouvant atteindre une quinzaine de mètres. Le tsunami fait également des dégâts en Inde, au Sri Lanka, et dans la corne de l'Afrique.

 

Chili, février 2010

 

Le séisme qui a frappé le Chili dans la nuit du 27 février 2010, a fait deux millions de sinistrés (voir article dans ce même blog). Il se classe sixième au rang des plus violents tremblements de terre des cent dernières années. Son épicentre ne se situe qu'à quelques kilomètres des côtes chiliennes, dans l'océan Pacifique. Les secousses, ressenties jusqu'à Santiago, à plus de 300 km au nord, provoquent un tsunami destructeur, avec des vagues allant jusqu'à 5 mètres qui ont ravagé les côtes. Les derniers bilans font état de 521 morts et 2 millions de sinistrés.

 

Japon, mars 2011


Le cinquième tremblement de terre le plus violent depuis un siècle restera dans les mémoires pour la catastrophe nucléaire qu'il a déclenchée. Mais le séisme qui a touché le Japon ce 11 mars 2011 était en lui-même mémorable. Il provoque un important tsunami, avec des vagues s'enfonçant jusqu'à 5 kilomètres à l'intérieur des terres, à une vitesse de 30 à 40 km/h. Elles détruisent tout sur leur passage. Au final, on dénombre près de 20 000 morts et disparus, 6000 blessés, et 125 000 bâtiments endommagés ou détruits.

 

Sumatra, avril 2012


Avec sa magnitude de 8,6, le tremblement de terre qui survient le 11 avril 2012 au large de l'Indonésie est le neuvième le plus puissant jamais enregistré depuis un siècle. Il frappe une région encore traumatisée par le séisme de décembre 2004. Dernier d'une série en cours, ses secousses, ressenties jusqu'à Singapour, en Thaïlande et en Inde, provoquent des scènes de panique dans la province d'Aceh, dans le nord de Sumatra, encore hantée par le souvenir du tsunami de décembre 2004. Cette fois, cependant, le séisme n'entraîne que des vagues de moins d'un mètre de haut. Les secousses causent la mort d'une dizaine de personnes.

 

Comment peut-on avoir un séisme aussi important à cet endroit ? Au lendemain du 11 avril 2012, Christophe Vigny (géophysicien à l'École normale supérieure de Paris) se perd en conjectures. C'est que, contrairement aux autres mégaséismes, qui se sont produits dans des zones de subduction (là où une plaque tectonique plonge sous une autre), celui de Sumatra résulte d'un mouvement horizontal de décrochement entre deux morceaux d'une même plaque. "La faille est verticale et environ 10 fois plus courte que les failles inclinées des zones de subduction détaille le géophysicien. Elle atteint donc plus rapidement la profondeur à partir de laquelle les roches ne sont plus cassantes." Or la magnitude d'un séisme est le produit de trois paramètres : la longueur de la faille, sa profondeur et l'intensité du glissement.

 

"Pour obtenir une telle magnitude avec une faille décrochante, il faudrait que la longueur de la faille ou le glissement soient beaucoup plus importants que ceux observés, remarque Christophe Vigny. À moins que la rupture n'ait été plus profonde qu'on ne le pense, ce qui soulève d'autres questions…"

 

Survenus en moins d'une décennie, ces quatre derniers séismes figurent dans le top 10 des plus violents séismes ayant secoué la planète au cours de ces 112 dernières années. Est-ce une simple coïncidence ? Ou bien une vulgaire épidémie ? Faut-il en particulier s'attendre à la survenue prochaine du fameux "big One", ce mégaséisme qui plane sur la côte ouest des États-Unis ? À la vue de ces spasmes à répétition, la question, en tout cas se pose : la Terre serait-elle entrée dans une période d'intense crise sismique ? Pour David Perkins, cela ne fait aucun doute. "Le nombre de séismes de magnitude supérieure à 8 survenus au cours de la décennie passée est quasiment le triple de celui mesuré sur les décennies du siècle précédent", constate ce statisticien de l'USGS, l'organisme américain qui surveille le pouls sismique de la planète. Et de rappeler que ce n'est d'ailleurs pas la première fois qu'une telle agitation est observée à la surface de notre planète.

 

megaseismes-fig1-1.jpg

 

Entre 1950 et 1965, une autre série de mégaséismes

 

Outre la recrudescence des années 2000, une série de grands séismes apparaît nettement entre 1950 et 1965. Cette courte période concentre à elle seule sept des neuf plus puissants tremblements de terre du XXe siècle ! Parmi eux, trois dépassent la magnitude 9, dont le monstrueux séisme de magnitude 9,5 qui secoua le Chili en 1960. Étonnamment, à cette quinzaine infernale succédèrent près de quarante années au cours desquelles peu de secousses ont atteint la magnitude 8, et aucune la magnitude 8,5. La fin du XXe siècle a donc été exceptionnellement calme comparée à la première décennie du XXIe siècle, qui compte déjà deux monstres de magnitude 9 et 9,1...

 

Avant même le tout récent séisme de Sumatra, David Perkins en était persuadé : "Cette succession de séismes majeurs entrecoupée d'une période d'accalmie relative a peu de chances d'être le fruit du hasard."

 

Pour étayer cette assertion, le chercheur s'appuie sur des calculs de probabilité d'occurrence. En pratique, il produit aléatoirement des centaines de milliers de catalogues de sismicité et mesure la fréquence avec laquelle il obtient, par hasard, certaines caractéristiques du catalogue historique. Et d'après ses calculs, la probabilité que les cinq séismes de magnitude supérieure à 9 enregistrés depuis 1900 se répartissent par hasard dans le temps tel qu'ils l'ont été est inférieure à 2 %. Plutôt improbable, donc.

 

Et plus qu'un lancé de dés très malchanceux, David Perkins voit dans ces regroupements de mégaséismes l'expression d'un phénomène planétaire non identifié jusqu'alors. Avec son collègue Charles Bufe, il propose l'existence, à l'échelle du globe, d'un cycle sismique comparable au cycle décrit à l'échelle d'une faille géologique. C'est-à-dire que la Terre suivrait une séquence temporelle comprenant une longue phase d'accumulation de contraintes tectoniques, et une phase de libération de l'énergie accumulée, sous forme de séismes particulièrement puissants. Les deux chercheurs voient donc dans l'évolution de l'énergie libérée par l'activité sismique un motif régulier appelé à se répéter, selon un cycle global d'environ 70 ans, dont quinze au cours desquels les mégaséismes se manifesteraient à la chaîne (voir courbe ci-dessous). D'après leurs calculs, la terre oscillerait donc entre un état relativement calme et un état de crise sismique. Et la série noire actuelle ne serait pas l'effet du hasard.

 

megaseismes-fig3-1.jpg

 

Des cycles sismiques contestés


Dans l'article qui détaillait pour la première fois leur théorie, ils constataient justement un regain d'activité sismique, et suggéraient qu'une nouvelle salve de tremblements de terre géants pourrait bien débuter. Or, cet article a été soumis pour publication sept mois avant que ne se produise le terrible séisme de Sumatra de 2004 et son tsunami dévastateur, et quelques années avant les mégaséismes suivants, au Chili et au lapon... "Il s'est passé ce que nous suggérions qu'il se passerait si ces essaims de gros séismes n'étaient pas dus simplement au hasard", remarque aujourd'hui David Perkins, qui ne croit pas avoir eu simplement de la chance en pariant sur un regain de colère de la Terre.

 

Cette proposition d'un supercycle sismique est toutefois loin de convaincre tout le monde. "L'approche statistique de Bufe et Perkins est biaisée, juge Peter Shearer, géophysicien de l'université de Californie à San Diego. Ils identifient dans le catalogue sismique des caractéristiques qui leur apparaissent anormales, et ensuite ils font des tests pour savoir quelle est la probabilité d'obtenir ces caractéristiques. En d'autres termes, ils formulent leur hypothèse après avoir sélectionné les données." Or, remarque le chercheur, n'importe quelle distribution obtenue de façon aléatoire peut donner une séquence d'événements qui semble, à vue d'œil, anormale. Par exemple, si l'on jette cent fois une pièce en l'air, elle peut retomber les dix premières fois du même côté. Ce qui peut paraître anormal. Une fois définie cette "anomalie", si on calcule après coup la probabilité pour qu'elle se produise, on la trouvera faible. Mais il ne faut pas pour autant y voir autre chose que le hasard... "Il faut faire des tests statistiques plus généraux sur la distribution passée des séismes, sans identifier au préalable des caractéristiques spécifiques, insiste Peter Shearer. Et on arrive à la conclusion que la séquence de séismes depuis 1900 ne peut être distinguée du résultat d'un processus aléatoire."

 

Un avis que partage Andrew Michael. Ce sismologue de l'USGS a lui aussi appliqué une batterie de tests statistiques aux archives sismiques de la Terre. "Les données du catalogue historique ne permettent pas de rejeter l'hypothèse selon laquelle les mégaséismes surviennent au hasard, conclut-il. La récente succession de grands tremblements de terre peut donc très bien être attribuée à une fluctuation dans un processus aléatoire." En clair : il n'y a pas de raison de soupçonner que les mégaséismes se manifestent à des moments en particulier ou qu'ils soient liés les uns aux autres. Reste que la prédiction de Perkins d'une entrée dans une nouvelle phase d'épidémie de mégaséismes a été faite avant le déclenchement de la série noire actuelle. Donc pas a posteriori, comme le reprochent ses détracteurs...

 

Mais comme le reconnaît Peter Shearer, le problème pour trancher la question est le manque de données - seulement cinq séismes de magnitude 9 depuis 1900. "On ne peut pas, sur la seule base des analyses statistiques, affirmer ni exclure qu'il y a une connexion entre les mégaséismes. Il se pourrait bien que ceux-ci surviennent par cycle, mais il n'y a pas assez d'événements pour l'affirmer avec certitude." Ce que confirme Christophe Vigny (ENS Paris) : "On ne saura s'il existe une cyclicité des séismes de magnitude 9 que lorsqu'on aura 500 ans de mesures de l'activité sismique du globe. Et encore ! Il faut plutôt se poser la question sur les mécanismes physiques sous-jacents qui expliqueraient pourquoi, certaines années, on aurait plus de grands séismes. Et là, je n'en vois aucun pour lier des séismes de cette taille à 20 000 kilomètres de distance."

 

Que des tremblements de terre en déclenchent d'autres n'est pourtant en soi pas une idée farfelue. Les sismologues savent depuis longtemps que lorsqu'un séisme majeur se produit à un endroit, il sera suivi localement par de très nombreuses répliques, de plus faible magnitude pour la majorité d'entre elles, et ce parfois pendant des années. On considère ainsi qu'un séisme de magnitude 9 déclenchera dans la région dix séismes de magnitude 8, cent de magnitude 7, mille de magnitude 6, etc. Le passage de l'onde sismique d'un séisme d'envergure peut aussi faire basculer des failles beaucoup plus éloignées et qui étaient sur le point de rompre. L'équivalent géologique de la goutte d'eau qui fait déborder le vase... Des études ont ainsi démontré que des séismes qui se sont produits aux États-Unis en 201l étaient associés aux mégaséismes du Chili en 2010 et du Japon en 2011, ou que des secousses en Chine en 2004 étaient le fruit du tremblement de terre de Sumatra. "Le déclenchement de séismes à distance n'est plus un sujet controversé, constate Nicholas Van der Eist, de l'université de Californie à Santa Cruz. Cependant, au-delà de quelques centaines de kilomètres de distance, aucun séisme de magnitude supérieure à 5 n'a pu être relié au passage de l'onde d'un séisme majeur".

 

Peut-on lier des mégaséismes éloignés ?


Autrement dit, il semble bien que les gros séismes n'en enfantent, à grande distance, que des petits. Reste que ces petits séismes vont à leur tour déclencher localement des répliques qui, en de très rares occasions, peuvent être plus puissantes que la secousse qui leur a donné naissance. De quoi faire le lien entre les mégaséismes éloignés ? Cette possibilité de cascade de séismes vient d'être analysée de près par Nicholas Van der Eist. "Si l'on considère une séquence de répliques liées à un petit séisme déclenché à distance par un tremblement de terre majeur, il est très peu probable qu'elle contienne un événement plus important que le petit séisme initial, détaille le géophysicien. Mais si un grand nombre de ces séquences de répliques sont initiées à l'échelle du globe, la probabilité cumulée que quelques-unes finissent par produire un gros séisme peut devenir plus importante."


Nicholas Van der Eist a donc regardé si, lorsqu'un puissant séisme se produit quelque part dans le monde, on observait un accroissement de la fréquence des petits séismes dans les régions où un tremblement de terre majeur allait ultérieurement se manifester. Par exemple, si le séisme de Sumatra en 2004 avait déclenché à distance une séquence de faibles secousses au Chili ou au Japon dans les zones où sont nés les monstres de 2010 et 2011. "Nous n'avons trouvé aucun signe d'une cascade d'événements qui pourrait expliquer l'augmentation actuelle du nombre de grands séismes", reconnaît le sismologue.

 

David Perkins ne désarme pas et prépare un nouvel article pour répondre aux critiques : "Il doit y avoir un mécanisme qui n'a pas encore été pris en considération, un moyen par lequel les gros séismes communiquent." Mais la distance n'est pas le seul obstacle à surmonter pour ce mécanisme encore inconnu. "Si un tri mécanisme de déclenchement existait, il faudrait encore expliquer pourquoi lors des périodes où le nombre de grands séismes est au-dessus de la moyenne historique, il n'y a pas plus de séismes de moindre magnitude, réplique Peter Shearer. Je ne vois pas comment ce mécanisme favoriserait la survenue des uns et pas celle des autres." Pour l'heure, en l'absence de signes statistiques décisifs et de mécanismes sismiques précis, la prudence convient plutôt de tenir la multiplication de puissants séismes pour de la pure coïncidence. "Mais la question est importante", remarque Peter Shearer.

 

 Dans l'attente du prochain…


Au-delà du débat scientifique, l'enjeu est vital : il s'agit de savoir si le risque pour les populations est aujourd'hui plus élevé qu'auparavant. "D'après nos calculs, si les grands séismes sont bien regroupés dans le temps, la probabilité d'avoir un séisme de magnitude supérieure à 8,6 dans les cinq années à venir est de 95 %, persiste David Perkins. Il faut s'y préparer." En particulier sur la côte ouest des États-Unis.

 

Là encore, peu de spécialistes sont d'accord avec ce pronostic alarmant. "La récente recrudescence de séismes majeurs n'a aucun pouvoir prédictif pour l'avenir", s'insurge ainsi Andrew Michael. Reste que les mégaséismes ne sont pas des événements parfaitement isolés les uns des autres. "Si dans les endroits où il n'y a pas eu d'activité sismique récente, comme la Californie et l'Alaska, le risque est à mon sens le même aujourd'hui qu'avant, la menace est certainement plus importante dans les régions comme Sumatra, le Chili, et le Japon qui ont récemment connu des mégaséismes", relève Peter Shearer.

 

Le séisme du 11 avril 2012 en est l'illustration parfaite, puisqu'il est lié à celui de Sumatra en 2004. Face à la complexité conjuguée des lois du hasard et de la sismologie, la science reste incapable de trancher. Et nous n'avons pas d'autre choix que d'attendre d'autres éventuels cataclysmes pour savoir si notre planète est en pleine épidémie. Condamnés à subir les caprices de la Terre, nous ne pouvons finalement être sûrs que d'une chose : hasard ou pas, la Terre nous fait vivre ces dernières années une terrible série noire.


 Peut-on prévoir les séismes ?


 Observer le ciel pour anticiper les tremblements de terre. Ce qui pourrait ressembler à une ancestrale pratique divinatoire est en réalité la très sérieuse proposition formulée par Kosuke Heki, géophysicien de l'université d'Hokkaido, au Japon. Celui-ci affirme avoir détecté un signe avant-coureur du mégaséisme qui a frappé l'archipel nippon en mars 2011. Une perturbation dans l'ionosphère, à 300 kilomètres d'altitude, repérée grâce au réseau de 1200 stations GPS qui quadrillent le pays (figure ci-dessous). "On savait déjà que les séismes génèrent des ondes acoustiques qui perturbent l'ionosphère après la secousse, explique Kosuke Heki. Ce que j'ai mis en évidence, c'est l'augmentation du contenu en électrons dans l'ionosphère qui débute 40 minutes avant le séisme !" Autrement dit : un potentiel signe précurseur des mégaséismes susceptible, s'il est confirmé, de sauver des centaines de milliers de vies... Point remarquable, le phénomène s'amplifie au fur et à mesure qu'on se rapproche de l'heure du tremblement de terre, et est plus marqué au-dessu de l'épicentre.

 

Fort de cette découverte, Kosuke Heki s'est penché sur deux autres séismes majeurs, celui du Chili en 2010 et celui de Sumatra en 2004. Dans les deux cas, il observe une anomalie similaire avant la secousse. "L'affirmation selon laquelle les séismes sont intrinsèquement imprévisibles n'est peut-être pas exacte, du moins pour les séismes de magnitude 9", lance le chercheur.

 

Mais cette annonce reçoit un accueil prudent. "L'ionosphère est un milieu excessivement variable, prévient ainsi Michel Parrot (CNRS), responsable du programme Demeter, satellite dédié à la recherche de signaux précurseurs. La météo ou les humeurs du Soleil perturbent régulièrement l'ionosphère. Il est donc difficile d'affirmer que l'anomalie observée est strictement liée à l'imminence d'un séisme." Une réserve partagée par Christophe Vigny (ENS, Paris) : "Je pense qu'il ne s'agit que d'une coïncidence fortuite. Mais il faudrait faire un vrai travail statistique : regarder combien de fois on détecte cette perturbation ionosphérique sans qu'il n'y ait de séisme par la suite. Sans cela, on ne pourra pas utiliser comme base d'un système d'alerte."


megaseismes-fig2-1.jpg

Sources :

  • Boris Bellanger, Mégaséismes, l'épidémie ? Sciences & Vie n°1137 juin 2012, pp. 70-80.
  • Charles G. Bufe and David M. Perkins. The 2011 Tohoku earthquake: resumption of temporal clustering of Earth’s megaquakes. Seismological Society of America meeting, Memphis, April 14, 2011.
  • Charles G. Bufe and David M. Perkins. Evidence for a Global Seismic-Moment Release Sequence, Bull. Seismol. Soc. Am., June 2005. DOI: 10.1785/0120040110
  • Andrew J. Michael. The recent rate of great earthquakes: global clustering or random variability ? Seismological Society of America meeting, Memphis, April 14, 2011.
  • Earle, P. S., S. Rost, P. M. Shearer, and C. Thomas, Scattered P'P' waves observed at short distances, Bull. Seismol. Soc. Am., 101, 2843-2854, doi: 10.1785/0120110157, 2011.
  • Shearer, P. M., and P. B. Stark, Global risk of big earthquakes has not recently increased, Proc. Nat. Acad. Sci., 109, 717-721, www.pnas.org/cgi/doi/10.1073/pnas.1118525109, 2012.
  • Sumiejski, P. E., and P. M. Shearer, Temporal stability of coda Q^-1 in southern California, Bull. Seismol. Soc. Am., 102, 873-877, doi: 10.1785/0120110181, 2012.
  • Chen, X., P. M. Shearer, and R. E. Abercrombie, Spatial migration of earthquakes within seismic clusters in Southern California : Evidence for fluid diffusion, J. Geophys. Res., 117, B04301, doi:10.1029/2011JB008973, 2012.

 

Séismes en Italie (Complément)

En cette fin de mai 2012, l'Italie est durement touchée par une série de séismes, qui, s'ils n'atteignent pas la magnitude des séismes géants décrits plus haut, n'en sont pas moins destructeurs.

 

19-20 mai 2012 : un fort séisme frappe le nord-est de l'Italie

 

Le nord-est de l'Italie, industriel et très peuplé, a été réveillé dans la nuit de samedi à dimanche 20 mai 2012 par un fort séisme qui a fait au moins six morts, des dizaines de blessés, et détruit des hangars d'usines, des habitations et clochers autour de la ville de Ferrare, au patrimoine historique classé. Le séisme, de magnitude 5,9 et survenu à 10 km de profondeur, avait son épicentre à Finale Emilia, à 36 km au nord de Bologne, dans la zone de Modène.

Un nouveau séisme de magnitude 5,1 a frappé dimanche après-midi la zone entourant Ferrare, dans le nord-est de l'Italie, a annoncé l'institut de géophysique.

 

Parmi les victimes figurent quatre ouvriers qui travaillaient de nuit dans des usines. Deux femmes sont décédées après avoir été prises de malaise à la suite du déclenchement du séisme.


Sous l'impact, plusieurs maisons et clochers d'églises de la région se sont écroulés, et des hôpitaux ont été évacués par mesure de sécurité. À Bologne et dans d'autres villes, des milliers d'habitants réveillés au milieu de la nuit sont descendus paniqués dans les rues.

 

Les premières images diffusées par les télévisions montraient des maisons à demi écroulées, des amoncellements de gravats sur les routes, des corniches d'églises ou de tours détachées.. Dimanche après-midi, environ 3 000 personnes ont dû être évacuées de leurs habitations en Émilie-Romagne, entre Modène et Ferrare.

 

Sous l'impact de ce séisme, qui est équivalent dans son intensité à celui de L'Aquila en 2009, plusieurs joyaux architecturaux de villages proches de Ferrare ont été endommagés. Des dégâts importants sont ainsi survenus dans la petite ville de San Felice, où une église s'est écroulée. De nombreux monuments historiques, dont l'hôtel de ville, y ont été endommagés, leurs murs lézardés. Dans la région de Bologne, la partie supérieure d'une tour du château de Galeazza s'est détachée. "Selon les premières consultations, les dégâts au patrimoine culturel sont importants", indique le ministère des biens et activités culturels italiens. Plusieurs hôpitaux ont été évacués par mesure de sécurité, dans la crainte de nouvelles secousses.

 

Le 29 mai 2012 : nouveau séisme qui a frappé le nord de l'Italie, à San Felice sul Pannaro

 

Une nouvelle secousse a été ressentie après le puissant séisme de magnitude 5,8 qui a touché mardi 29 mai 2012, vers 9 heures, le nord de l'Italie, non loin de Modène. Au moins seize personnes ont perdu la vie dans cette première secousse, selon la chaîne de télévision italienne Sky Tg24. La deuxième secousse est également d'une magnitude supérieure à 5.

 

Parmi elles, trois personnes sont mortes à San Felice del Panaro dans l'effondrement d'une usine, deux dans la localité proche de Mirandola, une à Concordia et une autre à Finale, a indiqué le commandant des carabiniers de Modène, Salvatore Iannizzotto.


L'épicentre se trouvait en Émilie-Romagne, une région déjà frappée il y a neuf jours par le précédent tremblement de terre. Les médias italiens ont rapporté que la nouvelle secousse avait provoqué l'effondrement de bâtiments déjà endommagés lors de ce précédent séisme. Depuis, plusieurs milliers d'habitants dormaient sous la tente par crainte de répliques.

 

La secousse a été ressentie dans tout le centre-nord de l'Italie. Depuis une dizaine de jours, la péninsule a enregistré de nombreux tremblements de terre, dans le Nord comme dans le Sud, touché lundi 28 mai 2012 par un séisme de magnitude 4,3.

 

Le président de l'Institut national de géophysique et de vulcanologie (INGV), Stefano Gresta, s'est montré préoccupé pour la suite : "La séquence [des secousses] sera longue et on ne peut exclure que d'autres séismes forts puissent se produire".

14/04/2012

Le nucléaire vu par notre minuscule souverain

 Le nucléaire vu par notre minuscule souverain... Édifiant !

 

(Mise à jour du 13/03/2014)

 

Rappelons à M. Sarkozy que l'Alsace est un fossé d'effondrement entre les Vosges et la Forêt Noire. Manifestement, notre président en sursis n'a jamais entendu parler des deux séismes de magnitude 7,5 et 9 qui ont détruit la région de Bâle le 18 octobre 1356 !

OùEstLaPlage.jpg

Canard Enchaîné (12/04/2012)

 

Remarques : le 18 octobre 1356, deux séismes de magnitudes estimées par le site du BRGM à 9 et 7,5 ont affecté la région bâloise à proximité de la centrale nucléaire de Fessenheim (Haut-Rhin).

En ce qui concerne cette centrale de Fessenheim, la plus vieille du parc français, il s'agit du séisme de référence. Sa magnitude (1) a été estimée à partir des registres notariaux et des annales religieuses. En fait, les avis divergent : EDF évalue sa magnitude à 6,1 ; l'Institut de radioprotection et de sûreté nucléaire (IRSN) à 6,8 ; et une étude suisse de 2009 à 7,1, ce qui est 30 fois plus violent que l'estimation de l'exploitant !

EDF a beau ajouter une marge de sûreté d'un demi-degré de magnitude au séisme historique de référence, la centrale de Fessenheim n'a pas été construite pour lui résister...

 

(1) Rappelons que la magnitude est l'énergie libérée par un séisme, indépendamment des dégâts provoqués. Elle est définie par une échelle logarithmique, où chaque unité ajoutée correspond à une multiplication par 32 de l'énergie libérée. Ainsi, un séisme de magnitude 9 libère, non pas 3 fois plus, mais 1 milliard 74 millions de fois plus d'énergie qu'un séisme de magnitude 3.

 

Mars 2014 : Un accident nucléaire grave est France est maintenant officiellement reconnu comme une possibilité à laquelle il faut se préparer : c’est le sens du "Plan national de réponse ’Accident radiologique ou nucléaire majeur’ " publié le 3 février par le Secrétariat général de la défense et de la sécurité intérieure.

On est surpris que la nouvelle ait suscité peu d’échos. Mais c’est ainsi.

Ce plan, qui décline sur cent-dix-huit pages et huit scénarios la conduite à tenir en cas d’accident grave, est une nouvelle étape dans la lente reconnaissance de la vraisemblance du pire.

Tchernobyl, en 1986, n’avait pas fait broncher la nomenklatura nucléariste.

Les choses ont commencé à changer à la suite de la submersion partielle de la centrale du Blayais (Gironde), fin 1999 : la France était alors passée à deux doigts d’une catastrophe nucléaire...

 

Pour en savoir plus, voir l'article de Mediapart.

 

22/03/2012

Séismes provoqués par les activités humaines

séisme,séisme provoqué par l'homme,barrages,forages profonds,activités minières,géothermie profonde,gaz de schisteSéismes provoqués par les activités humaines

 

par Boris Bellanger (Science & Vie 2009)

 

L'Homme responsable de séismes ? Barrages, mines, forages, géothermie agressent la croûte terrestre engendrant parfois des réactions dévastatrices. Toutes ces installations peuvent déclencher des tremblements de terre. À Bâle (Suisse) en décembre 2006 une mine de charbon dans l'Utah (États-Unis) en août 2007, et un autre dans la région de Sarrebruck (Allemagne) en février 2008 ont enfanté une série de séismes. Sans oublier le dévastateur tremblement de terre survenu au Sichuan en Chine le 12 mai 2008, que certains scientifiques audacieux relient aujourd'hui à la présence du barrage voisin de Zipingpu.

 

séisme,séisme provoqué par l'homme,barrages,forages profonds,activités minières,géothermie profonde,gaz de schiste

Barrage de Zipingpu © Creatio

 

Depuis des décennies, plusieurs observations ont interpellé les scientifiques qui sont à l'écoute des soubresauts de notre planète. "Le soupçon d'influence naît lorsqu'il y a coïncidence dans le temps et dans l'espace entre le tremblement de terre et la mise en activité d'une installation, par exemple lors de la mise en eau d'un barrage, explique Jean-Robert Grasso, du Laboratoire de géophysique interne et tectonophysique de l'université Joseph-Fourier (Grenoble), un des rares Français à se pencher sur ce sujet. "Si l'on observe un événement sismique, on s'interroge, mais lorsque c'est une série d'événements qui se produit à un endroit précis, notre certitude augmente."

 

Pour pouvoir incriminer une ingérence humaine dans la tectonique de la planète, il est nécessaire de connaître précisément l'activité sismique de la région avant la mise en service des installations incriminées. En France, l'historique des secousses ressenties par la population est parfaitement documenté sur les cinq derniers siècles. Ce qui a permis notamment à Jean-Robert Grasso de démontrer de manière flagrante, dès les années 1980, que les séismes enregistrés dans la région de Pau, dont certains de magnitude 4, étaient dus à l'exploitation de l'immense gisement de gaz naturel de Lacq par Elf Aquitaine. Le bassin sédimentaire aquitain était en effet connu jusque-là pour être le plus calme de France au niveau sismique. "Les tremblements de terre apparus dix ans après les premiers pompages à Lacq, en 1969, et qui perdurent depuis, ont donc été facilement repérés", explique Pascal Bernard, sismologue à l'Institut de physique du globe de Paris.

 

Un autre exemple ? Dans le nord-est des États-Unis, l'exploitation de mines profondes, de vastes carrières à ciel ouvert et de puits d'injection de fluide en profondeur est, d'après les chercheurs, directement à l'origine d'un séisme sur trois enregistrés depuis les années 1980 dans cette région normalement peu active d'un point de vue géologique ! Et ce n'est pas une particularité locale, comme le démontrent les travaux de Christian Kiose, géologue à l'Observatoire de la Terre Lamont-Doherty de l'université Columbia (New York).

 

Dans une tentative de recensement publiée en août 2007, ce scientifique a dénombré plus de 200 endroits dans le monde pour lesquels l'action humaine a été reconnue comme responsable du déclenchement de séismes. Sa conclusion ? "Si l'on regarde la distribution des séismes déclenchés par l'Homme à l'échelle du globe, il apparaît que la majorité d'entre eux est située dans les régions continentales stables, pour lesquelles le niveau de sismicité naturelle est historiquement bas."

 

Il est évident que la coïncidence entre un séisme et la mise en exploitation d'un champ pétrolier ou d'un barrage est plus aisée à démontrer si la région n'est pas secouée en permanence. Un principe qui est d'ailleurs aussi valable lorsque l'on cherche à détecter les séismes produits par les essais nucléaires souterrains, comme celui réalisé en octobre 2006 par la Corée du Nord, et qui a déclenché une secousse de magnitude 4,2. Mais au-delà de cette meilleure capacité de détection, il existe des raisons purement géologiques à cette répartition. De fait, le risque de générer des tremblements de terre est plus important dans les régions continentales "calmes" parce que, contrairement aux endroits très actifs du globe, ce sont surtout les premiers kilomètres de la croûte terrestre, près de la surface, qui voient naître les séismes naturels. Or "ces zones sismogènes sont à portée des perturbations générées par l'activité humaine, donc plus facilement déstabilisées par elles", conclut Art McGarr, du Bureau de surveillance géologique des États-Unis (USGS). Un point déterminant lorsqu'il s'agit de démontrer, arguments mécaniques à l'appui, le lien entre séisme et activités humaines. Et qui permet de verser au dossier des preuves plus percutantes qu'une simple coïncidence, notamment dans les cas délicats pour lesquels il s'est passé plusieurs années entre le début de l'exploitation et la survenue d'un séisme majeur.

 

À la base clé l'argumentation des chercheurs, une théorie de mécanique des roches dite de Mohr-Coulomb, vieille de plus de cent ans et qui a fait ses preuves pour évaluer la résistance d'un matériau à la contrainte. Élaborée à partir d'expériences en laboratoire sur des cylindres de roches soumis à de fortes pressions ou tractions, cette théorie permet de décrire la façon dont une faille (une zone de fracture naturellement présente dans la croûte terrestre) s'approche ou s'éloigne de la rupture en fonction des contraintes physiques auxquelles elle est soumise. Les principales contraintes antagonistes étant, d'une part, la force verticale exercée par la masse des roches au-dessus de la faille et, d'autre part, les forces horizontales de compression ou d'extension liées aux mouvements des plaques tectoniques. Les roches réagissent à ces pressions en se déformant de façon élastique jusqu'au moment où, ces contraintes dépassant la capacité de résistance de la faille, celle-ci joue et libère l'énergie qu'elle a emmagasinée : c'est le séisme.

 

En accumulant des masses impressionnantes d'eau derrière un barrage, ou en extrayant des millions de tonnes de minerai ou d'hydrocarbures du sous-sol, l'activité humaine pèse sur la croûte terrestre ou, au contraire, la soulage d'un poids. Ce faisant, elle modifie les contraintes auxquelles sont déjà soumises naturellement les failles et, en venant s'ajouter aux forces tectoniques, peut faciliter leur rupture. Autrement dit, "un séisme déclenché par l'Homme est avant tout un phénomène naturel, la responsabilité de l'Homme se limitant à son déclenchement", précise Leonardo Seeber, spécialiste de la sismicité induite par les activités humaines au Lannont-Doherty. Le travail des scientifiques consiste donc à démontrer que le changement de contrainte imposé par l'Homme sur la faille arrive dans la bonne direction, au bon moment, et avec suffisamment d'intensité pour précipiter un tremblement de terre.

 

UNE PETITE PERTURBATION SUFFIT À DÉCLENCHER UN SÉISME


Ce qui ressort de l'analyse des nombreux cas recensés est très étonnant : l'Homme n'a pas besoin de perturber fortement le système naturel pour réactiver une faille. "Si la faille est sur le point de rompre, il peut suffire d'un changement de contrainte en profondeur, au niveau de la faille, d'un dixième de bar (c'est-à-dire équivalent à un dixième de la pression atmosphé- rique) pour déclencher la rupture", explique Pascal Bernard. L'homme peut ainsi précipiter l'apparition d'un séisme de la même façon qu'une mouche se posant sur un château de carte en équilibre précaire sera à même, malgré sa légèreté, de le faire s'écrouler. C'est ainsi qu'il aurait déclenché un tremblement de terre à Newcastle, en Australie, en 1989. Mais il n'y a pas que ces failles au bord de la rupture qui soient concernées, car les perturbations induites par l'homme, lorsqu'il injecte de l'eau sous pression, peuvent être de l'ordre de la dizaine de bars. Ce qui correspond justement à ce dont une faille a besoin en moyenne pour se recharger.

 

"Des failles en milieu de cycle peuvent donc très bien être déclenchées par l'Homme, pour peu qu'elles soient très proches du lieu de l'installation", précise Pascal Bernard. Si l'Homme n'a qu'une pichenette à donner pour réveiller une faille endormie, il est donc à même de rivaliser avec les forces mises en œuvre par notre planète...

 

Ainsi, les activités humaines ont la capacité bien embarrassante de précipiter le déclenchement d'un séisme. Reste à savoir combien de temps l'Homme a fait "gagner" à la faille. Si on s'intéresse aux régions où la vitesse à laquelle la faille se rapproche du point de rupture est élevée, comme aux limites des plaques tectoniques (Ceinture de feu du Pacifique ou chaîne himalayenne, par exemple), la perturbation humaine va rapprocher la survenue du séisme de quelques années seulement. "Mais si l'on considère les zones où les failles se chargent extrêmement lentement, comme au milieu d'une plaque tectonique [telles que l'Afrique du Sud, l'Australie ou l'Europe du Nord...], l'anticipation peut être de mille ans ou de dizaines de milliers d'années ! précise Leonardo Seeber. Dans ce cas, on peut considérer que ce séisme ne serait jamais arrivé sans l'intervention de l'Homme." Face à cette situation dérangeante, une question se pose donc : connaissant les perturbations que l'être humain génère, peut-on prédire la date d'un tremblement de terre ? Malheureusement pas... "Qu'il soit naturel ou déclenché par l'homme, un séisme est impossible à prévoir, constate Jean-Robert Grasso. Pour la simple raison que l'état des contraintes dans la croûte terrestre n'est pas connu et n'est pas directement accessible à l'observation." C'est d'ailleurs un défi que tentent de relever les géologues américains depuis 2004 avec l'Observatoire de la faille de San Andréas (Safod).

 

CAS DES BARRAGES

 

Le barrage Hoover, situé à la frontière entre l'Arizona et le Nevada, a été, en 1945, le premier pointé du doigt pour avoir déclenché un séisme, dix ans plus tôt.

 

Au cours des années 1960, quatre séismes majeurs, de magnitude supérieure à 6, ont été enregistrés et, après coup, associés à des barrages : celui de Hsinfengkiang en Chine (1962), celui de Kariba en Zambie (1963), celui de Kremasta en Grèce (1967) et celui de Koyna en Inde (1967). Ce dernier barrage constitue un cas d'école, car il est lié au séisme le plus violent (magnitude 6,3) et le plus meurtrier (200 morts). Depuis sa mise en place, en 1962, la zone est le siège d'incessantes secousses : 170 séismes de magnitude supérieure à 4, dont 19 de magnitude supérieure à 5, y ont été mesurés ! Aujourd'hui, une centaine de barrages dans le monde sont reliés à des tremblements de terre, selon le recensement effectué par Harsh Gupta, spécialiste mondial de la sismicité induite par les barrages et membre de l'institut national de recherches géophysiques (Hyderabad, Inde). Parmi ces installations, dix ont déclenché des séismes de magnitudes comprises entre 5 et 5,9 et 28 autres, des séismes de magnitudes de 4 à 4,9.

 

séisme,séisme provoqué par l'homme,barrages,forages profonds,activités minières,géothermie profonde,gaz de schiste

En octobre 2008, la Commission internationale des grands barrages (Paris), qui représente les constructeurs, a également publié un rapport consacré à ce phénomène. Ses auteurs estiment que 1 % des grands barrages dont la retenue d'eau dépasse 100 m de haut soit six ouvrages, sont associés à des séismes de magnitude supérieure à 5,7. Une part qualifiée de "non négligeable" dans le rapport, qui rappelle cependant que "la mise en eau d'un barrage ne peut déclencher une activité sismique qu'en conjonction avec des conditions tectoniques préexistantes favorables". Lesquelles ? Comme c'est presque toujours le cas en matière de séismes déclenchés par l'homme, l'existence, à l'aplomb de l'ouvrage, de failles prêtes à rompre. Failles que le barrage, et plus spécifiquement son lac de retenue, titillent de deux façons. La première est liée aux immenses quantités d'eau stockées qui pèsent sur le sol, augmentant, même faiblement, la contrainte verticale sur la faille. La seconde repose sur l'infiltration lente d'eau en profondeur qui va lubrifier la faille, et lui permettre de glisser plus facilement. L'existence de ces deux mécanismes explique pourquoi certains séismes apparaissent rapidement après la mise en eau du barrage tandis que d'autres, mettant en jeu des failles plus profondes, se manifestent des années après. Ainsi, le barrage d'Assouan, en Égypte, a-t-il été associé à un séisme de magnitude 5,3 survenu en novembre 1981; dix-sept ans après sa mise en eau. La multiplication des cas de sismicité induite par les barrages a aussi permis de montrer que la hauteur d'eau dans le barrage, ainsi que la vitesse à laquelle le lac de retenue est rempli ou vidé, influe significativement sur la survenue de tremblements de terre.

 

Pour une poignée de sismologues, le séisme du Sichuan a été déclenché par le barrage de Zipingpu. Si la thèse était confirmée, l'impact destructeur de l'Homme sur la planète devrait être reconsidéré… pour éviter le pire.

Plus de 88 000 morts ou disparus, près de 400 000 blessés, 5 millions de bâtiments détruits : le tremblement de terre qui a secoué la province du Sichuan (centre-ouest de la Chine) le 12 mai 2008 est l'un des plus dévastateurs enregistrés au cours des dernières décennies. Le tremblement de terre du Sichuan pourrait tout aussi bien devenir le symbole du potentiel destructeur de l'activité humaine ! Car, moins d'un an après sa survenue, une poignée de scientifiques n'hésitent pas à voir la marque de l'homme derrière ce séisme meurtrier...

L'accusé ? L'imposant barrage de Zipingpu, construit sur la rivière Min, et mis en eau en décembre 2004. Haut de 156 mètres, il peut retenir plus d'un milliard de mètres cubes d'eau. Il a surtout la particularité d'être installé à 500 mètres seulement du système de failles qui a joué lors du tremblement de terre et à quelques kilomètres de l'épicentre de la secousse principale de magnitude 7,9.

À la suite de Fan Xiao, ingénieur en chef du Bureau de géologie et de minéralogie du Sichuan, à Chengdu, qui a en effet émis publiquement l'hypothèse que le séisme ne soit en fait qu'un exemple supplémentaire, le plus spectaculaire jamais observé, de sismicité induite par les barrages de nombreux scientifiques ont pointé un doigt accusateur vers le barrage.

 

CAS DES MINES

 

séisme,séisme provoqué par l'homme,barrages,forages profonds,activités minières,géothermie profonde,gaz de schiste


Plus de 6 milliards de tonnes de charbon, 1,6 milliard de tonnes de minerai de fer, 190 millions de tonnes de minerai d'aluminium, voici ce que l'homme extrait chaque année, entre autres matières premières, du sous-sol de la Terre. Une exploitation qui perturbe l'équilibre des forces dans la croûte terrestre et s'accompagne d'une intense activité sismique. Celle-ci, observée dès le début du XXe siècle dans les mines de charbon d'Allemagne et dans les mines d'or d'Afrique du Sud, est aujourd'hui constatée aux quatre coins du monde. Les séismes sont classés par les géophysiciens en deux catégories, selon qu'ils prennent naissance près de la mine ou à plusieurs kilomètres en dessous. Dans le premier cas, qui concerne surtout les mines profondes, c'est le vide laissé par l'extraction du minerai qui entraîne localement un déséquilibre des contraintes auxquelles sont soumises les roches.


Lorsque la pression exercée par les terrains adjacents ou surplombant la galerie dépasse la résistance de la roche, murs ou toits des galeries cèdent, produisant une onde sismique. Cette perturbation peut aussi faire jouer des failles à quelques dizaines ou centaines de mètres du front de mine. Ce premier type de sismicité s'observe en particulier dans les mines d'or d'Afrique du Sud, qui peuvent atteindre 4 km de profondeur. "Sur les 1000 séismes de magnitude supérieure à 2 enregistrés chaque année dans le pays, 900 sont directement liés aux exploitations minières", estime Kaymona Durrheim, du conseil pour la recherche scientifique et industrielle d'Afrique du Sud. Généralement, ce type de séismes ne dépasse pas la magnitude 5, hormis quelques événements exceptionnels comme celui de Volkershausen (Allemagne), où la rupture en série de 3 200 piliers de soutien dans une mine de potasse a engendré une secousse de magnitude 5,4 en 1989. En second lieu, les mines peuvent, à l'instar des barrages, avoir un effet à grande distance sur des failles prêtes à rompre : la soustraction d'une importante masse près de la surface va réduire la contrainte verticale sur la faille en profondeur, et la faire bouger. Christian Klose, de l'université Columbia, a par exemple démontré, en 2006, qu'on pouvait attribuer à l'exploitation d'une mine de charbon la responsabilité du tremblement de terre de magnitude 5,6 qui a secoué Newcastle (Australie) le 28 décembre 1989, faisant 13 morts et 3,5 milliards de dollars de dégâts.


Le géophysicien a calculé que l'extraction de 500 millions de tonnes de charbon entre 1801 et 1989, qui a aussi nécessité le pompage de 3 milliards de tonnes d'eau, a généré un changement de contrainte à 10 km de profondeur. Un allégement d'à peine 0,1 bar, mais suffisant pour précipiter la rupture d'une faille, Hormis ce cas, Christian KIose recense une vingtaine de mines dans le monde associées à des séismes de magnitude supérieure à 5. Et précise : "Le nombre de séismes induits par les mines a fortement augmenté au cours du XXe siècle. Ce qui s'explique par la hausse de la productivité des mines et de la profondeur à laquelle on les exploite". Un phénomène qui n'est pas près de s'achever...

 

CAS DES FORAGES

 

séisme,séisme provoqué par l'homme,barrages,forages profonds,activités minières,géothermie profonde,gaz de schiste


C'est le gisement de Goose Creek, au Texas, qui est le premier associé à un séisme, en 1925. Aujourd'hui, plusieurs dizaines de champs d'hydrocarbures sont concernés dans le monde. "Chaque fois qu'on exploite des gisements un tant soit peu profonds, on sait qu'on va déclencher des séismes", déclare Jean-Robert Grasso, de l'université Joseph-Fourier (Grenoble). La raison ? La roche-réservoir se comporte comme une éponge : quand on pompe le pétrole, le gaz et l'eau qu'elle renferme dans ses pores, elle se contracte et le couches qui l'encadrent doivent faire face à ce changement de volume. Quand le gisement est superficiel, les terrains, plutôt meubles à cet endroit, réagissent en se déformant graduellement, sans secousses. Mais dès que l'on dépasse quelques kilomètres de profondeur, les terrains sont plus rétifs à la déformation et finissent par céder le long de failles préexistantes, déclenchant des séismes. C'est ce qui se passe par exemple à Lacq, dans les Pyrénées-Atlantiques, mais aussi dans le nord des Pays-Bas. Là, l'exploitation des champs de gaz naturel de Groningue a brisé le calme d'une zone jusqu'ici classée comme asismique... Entre 1986 et 2008, plus de 500 séismes de magnitude comprise entre 0,5 et 3,5 ont été dénombrés à proximité des sites d'extraction.


"A partir de l'analyse statistique de ce catalogue de séismes, il faut s'attendre au maximum à un séisme de magnitude 3,9 dans la zone", estime Bernard Dost, de l'Institut royal de météorologie des Pays-Bas qui surveille la zone. Une magnitude modérée si on la compare avec celle de 6,5 enregistrée en 1983 sous le gisement de pétrole de Coalinga, en Californie. Ou encore avec l'immense gisement de Gazii, en Ouzbékistan, à l'aplomb duquel trois tremblements de terre de magnitude supérieure à 7 ont été mesurés, en avril et mai 1976 et en mars 1984. Un cas de sismicité induite qui reste cependant encore très débattu, compte tenu de l'ampleur des secousses et de la profondeur à laquelle elles ont été déclenchées. Les forages pétroliers peuvent, outre les tremblements de terre, donner naissance à des volcans de boue. À l'image de celui qui sévit sur l'île de Java (Indonésie) depuis le 28 mai 2006 et qui déverse quotidiennement plus de 150 000 m3 de vase jaillissant de poches souterraines. Près de 40 000 personnes ont déjà dû abandonner leur logement. Et la situation ne s'améliore pas : comme pour les séismes, l'homme n'a toujours pas réussi à contenir ce qu'il a engendré.

 

Des capteurs ont été placés dans des forages à 3 km sous la surface pour mesurer les propriétés des roches et leur état de stress à cette profondeur.

 

Un terrain d'expérimentation inédit qui ne permet pas encore de dire quand la faille va se réveiller... Inutile donc d'espérer maîtriser les sautes d'humeur de la Terre suscitées par nos gratouillements. "On ne pourra jamais dire à coup sûr que si on construit dans une zone de failles, ça va casser, résume Jean-Robert Grasso. Mais il convient d'être alerté sur l'état de précarité de la croûte terrestre, qui est un système très hétérogène constitué de régions prêtes à ompre et d'autres, non. " Et les scientifiques ne sont toujours pas en mesure de dire lesquelles vont rompre...

 

CAS DE LA GÉOTHERMIE PROFONDE

 

séisme,séisme provoqué par l'homme,barrages,forages profonds,activités minières,géothermie profonde,gaz de schiste


La géothermie profonde fait appel à la technique de fracturation hydraulique, qui consiste là injecter des fluides sous pression afin de fissurer la roche en sous-sol.

 

Forer un puits de 5000 m de profondeur et y injecter de l'eau sous très haute pression : voilà comment les ingénieurs transforment un massif granitique d'une température de près de 200°C en échangeur de chaleur naturel. Cette technique de géothermie profonde est appliquée dans une poignée de sites expérimentaux et s'accompagne de son lot de séismes : les pressions d'injection, d'une centaine de bars, ayant justement pour but de faire rejouer d'anciennes fractures afin de faciliter, dans un second temps, la remontée d'une eau réchauffée. Le projet de géothermie profonde près de Bâle, en Suisse, en a fait les frais : il a été arrêté après avoir engendré trois tremblements de terre de magnitude supérieure à 3 de décembre 2006 à janvier 2007. Des secousses sans conséquences, mais qui ont ravivé le spectre du séisme ayant rasé Bâte en 1356.


À 200 km de là, le site pilote français de Soultz-sous-Forêts, dans le Bas-Rhin, connaît aussi des pics de sismicité lors des tests de stimulation hydraulique. En juillet 2000,7500 séismes de magnitude supérieure à 0,2, dont une centaine supérieure à 2, ont ainsi été générés. En mai 2003, 4000 secousses ont été enregistrées, dont une de magnitude 2,9 qui a surpris les sismologues. "Cette année-là, nous avons non seulement induit des microséismes, mais aussi déclenché une petite crise sismique sur une faille passant à proximité du puits d'injection", explique Louis Dorbath, de l'Observatoire des sciences de la Terre à Strasbourg. Deux autres projets de géothermie profonde ont déclenché des tremblements lors d'opérations de stimulation hydraulique : un de magnitude 3,1 à Rosemanowes en Angleterre, et un de magnitude 3,7 à Copper Basin, en Australie. En outre, la géothermie s'accompagne parfois de mouvements de sol "au ralenti"! Comme à Staufen (Allemagne), où un forage a transpercé en 2008 une nappe d'eau souterraine. Depuis, les sols de la ville gonflent et se soulèvent...


CAS DES GAZ DE SCHISTE


Comme la géothermie profonde, la technique d'extraction des gaz de schiste fait appel à la technique de fracturation hydraulique qui pourrait être la cause de tremblements de terre. En effet, les cas de séismes possiblement associés à cette pratique se sont multipliés, particulièrement aux États-Unis, qui connaissent une ruée vers ces gaz non conventionnels.

 

Dernier exemple en date : un tremblement de terre de magnitude 4 a surpris les habitants de la ville de Youngstown, dans l'Ohio, le 31 décembre 201l. Annoncé par une dizaine d'autres de moindre ampleur au cours des mois précédents, ce séisme pourrait avoir été provoqué par un puits mis en service fin 2010, et dans lequel ont été injectées des tonnes d'eaux usées ayant servi à la fracturation hydraulique. Selon John Armbruster, de l'université Columbia (New York), "le séisme du 31 décembre a eu lieu à environ 1 km du fond du puits d'injection". Fin novembre, ce géologue avait installé quatre sismographes sur le site pour cerner l'origine de ces séismes survenus dans une zone historiquement inactive. La proximité entre le puits et la secousse est pour le moins troublante... Mais prouver le lien de cause à effet reste cependant délicat.

 

Un rapport du Bureau géologique américain, publié en août 2011, qui analysait cinquante séismes enregistrés dans une exploitation de gaz de schiste en Oklahoma, concluait ainsi : "La forte corrélation spatiale et temporelle suggère que ces séismes ont pu être déclenchés par l'activité de fracturation hydraulique, mais il est impossible de dire avec un haut degré de certitude si c'est le cas ou non." La société qui exploite le puits d'injection de Youngstown nie d'ailleurs toute implication. Au contraire de la compagnie Cuadrilla Resources qui a admis, en novembre dernier, être probablement à l'origine de deux séismes survenus en Angleterre, au mois d'avril et au mois de mai 2011.

 

Pour en savoir plus :


Bellanger B. (2009). – Quand l'homme fait trembler la terre Science & Vie avril 2009, n° 1099, pp. 44-59

03/07/2010

Structure du globe terrestre

Structure du globe terrestre

 

par André Guyard et Serge Warin

(dernière mise à jour du 20 mars 2017)

 

Cet article est la suite de l'article expliquant les techniques d'exploration des profondeurs de la terre. Il sert de préambule à une série de sept articles concernant les volcans de l'Arc antillais, en présentant quelques généralités sur la structure du globe terrestre.

 

L'existence du volcanisme s'explique par la structure du globe terrestre et dans le cadre de la théorie de la tectonique des plaques.

 

On trouvera sur le web de bonnes animations vidéo  sur la structure interne de la Terre et sur la tectonique des plaques et, publié par notre-planète.info un document récent sur la structure de la Terre (ajout du 30 janvier 2017).

 

Ajout du 10/09/2016: La subduction contrôle la distribution et la fragmentation des plaques tectoniques terrestres par Claire Mallard,, Nicolas Coltice, Maria Seton, R. Dietmar Müller & Paul J. Tackley

 

La croûte terrestre est morcelée en un ensemble de grandes et de petites plaques. Cette structure serait le fruit de l'interaction entre les mouvements convectifs du manteau et la résistance de la croûte.

 

La croûte terrestre est un puzzle de 53 pièces, les plaques tectoniques. Ces pièces se classent en deux catégories, les petites et les grandes. Ces dernières sont seulement au nombre de sept, correspondant à l'Amérique du Nord, l'Amérique du Sud, l'Afrique, l'Eurasie, le Pacifique, l'Australie et l'Antarctique. Ensemble, ces grandes plaques couvrent 94 % de la surface du globe. Entre ces grandes plaques, on trouve 46 petites plaques complémentaires. Pourquoi une telle répartition et quels mécanismes ont conduit à ce découpage ?

 

Claire Mallard, du Laboratoire de géologie de Lyon, et ses collègues ont réalisé des simulations numériques de Terres fictives en 3D pour comprendre comment la croûte se découpe.

La surface de la Terre est en perpétuel mouvement. Cette idée fut avancée pour la première fois par Alfred Wegener au début du XXe siècle, mais la communauté des géophysiciens mit des décennies à accepter sa théorie de la dérive des continents.

 

Dans les années 1950-1960, la théorie a été reformulée en termes de tectonique des plaques : la lithosphère — la croûte et la partie supérieure du manteau terrestre — se compose de plaques qui se forment au niveau des dorsales océaniques et disparaissent en s'enfonçant dans le manteau dans les zones de subduction. On peut reconstituer le mouvement des plaques grâce aux anomalies magnétiques enregistrées dans la croûte océanique. Mais celle-ci a une courte durée de vie, si bien qu'il est difficile de reconstruire l'histoire géologique au-delà de 100 millions d'années et d'en déduire les mécanismes sous-jacents.

 

structure de la terre,géologie,croûte océanique,manteau,volcanisme,tectonique des plaques,subduction,dorsale médio-atlantique,bridgmanite,mouvements de convection du manteau,désinclinaisons des joints de grains du minéral,pérovskite,postpérovskite,graine terrestre,champ magnétique terrestre,translation de la graine,vent de matière,vie dans les profondeurs

Les simulations des planètes Terre fictives tridimensionnelles effectuées par l'équipe de Claire Mallard incluent une description des mouvements de convection dans le manteau. Ces calculs prennent en compte de nombreux paramètres, tels que la viscosité et la plasticité du manteau.

 

Les chercheurs ont retrouvé dans leurs simulations une répartition entre grandes et petites plaques équivalente à celle constatée. Cela confirme que la répartition des plaques tectoniques est liée aux interactions entre la convection mantellique et la lithosphère. En particulier, les chercheurs ont montré que les dimensions des cellules de convection sont comparables à la taille des grandes plaques et que les petites plaques se forment préférentiellement près des zones de subduction, là où les plaques, en s'enfonçant dans le manteau, subissent de fortes contraintes.

 

Jusqu'à présent, les reconstructions de l'histoire géologique étaient fondées sur des approches statistiques. Elles suggéraient que la lithosphère était principalement composée de grandes plaques, il y a 200 millions d'années. Les plaques se seraient morcelées par la suite. D'autres chercheurs pensaient qu'il devait y avoir plus de zones de subduction dans le passé avec davantage de petites plaques, mais sans pouvoir le prouver.

 

Cette nouvelle étude appuie cette seconde hypothèse et montre que la répartition entre petites et grandes plaques est restée assez stable sur plusieurs centaines de millions d'années. Les précédents modèles surestimaient, pour le passé, le nombre de grandes plaques au détriment des petites.

 

C. Mallard et al. (2016) — Nature, vol. 535, pp. 140-143, 2016

 

Structure en oignon du globe terrestre

 

Grâce à l'étude de la propagation des ondes sismiques à travers la planète on a pu démontrer que la Terre a une structure en oignon, les couches concentriques étant composées de différents matériaux.

 

structure_planète_01-1.jpg
Coupe du globe terrestre
(Infographie Keith Kashot, Pour la Science n° 394, août 2010)
 
 
structure_planète02-1.jpg
Détail de l'encadré ci-dessus

 

LA CROÛTE (jusqu'à 35 km de profondeur ; 1% du volume de la terre)

 

Les continents en partie immergés sous les océans, sont constitués de diverses roches relativement légères, dont l'âge  atteint plusieurs milliards d'années. Ils flottent ainsi sur le manteau plus dense. La croûte océanique, formée de roches basaltiques, est un peu plus dense. Elle se forme à partir de matériau du manteau qui émerge au niveau des dorsales sous-marines et qui finit par y retourner en coulant après 100 millions d'années en moyenne.

 

LE MANTEAU (de 35 à 2900 km ; 83% du volume de la terre)

 

Sous la croûte terrestre se trouve le manteau, masse de roches maintenues sous très haute pression (le magma). Cette masse subit des mouvements de convection. La convection dans le manteau de composition dominée par les silicates est le moteur du volcanisme et de la tectonique des plaques. La chaleur interne est en partie le résidu de la formation planétaire, et en partie produite par la radioactivité du manteau. Le manteau chauffé par le bas, subit des mouvements de convection : la matière froide descend et la matière chaude monte. De sorte que les bords des plaques tectoniques plus froids, vont plonger sous les autres, entraînant activement les plaques et les écartant au niveau des dorsales, constituant ainsi le moteur de la tectonique des plaques. Contrairement à l'idée reçue, ce n'est pas la dorsale qui écarte les plaques. À ce niveau, une simple remontée passive de magma chaud se produit pour combler le vide causé par l'écartement des plaques.

Zone-rigide-manteau.jpg

À environ 1500 km de la surface du sol, il y aurait une couche rigide au sein du manteau terrestre. Sa composition est la même que celle du manteau, mais sa viscosité est cent à mille fois supérieure. Cette couche permet d'expliquer pourquoi dans les zones de subduction, là où une plaque tectonique s'enfonce dans le manteau (1), ses fragments ne peuvent aller au-delà de 1500 km (2) : ils butent contre cette région visqueuse, ce qui provoque des tensions et des ruptures et donne naissance à des séismes à foyer profond. C'est la première fois qu'on trouve une explication à ce phénomène. Source : Hauke Marquardt, Université de Bayreuth, Allemagne.

 

D'après Michel Detay, l'idée que la matière constituant le manteau terrestre (les 2 885 kilomètres séparant la croûte du noyau de la Terre) est en fusion est fausse. Nous ne marchons pas sur un océan de magma, et il n'y a pas de « feu central », car les roches qui constituent le manteau sont à l'état solide. Étant donné l'augmentation de la pression et de la température avec la profondeur, la fusion, même partielle, des roches du manteau — des péridotites, formées de silicates de fer (10 %) et de magnésium (90 %) — est impossible.

Pour autant, une énorme masse d'eau, estimée à l'équivalent de deux à trois hydrosphères, soit deux ou trois fois 1021 kilogrammes – est dissoute dans le manteau. Cette eau s'y trouve soit sous sa forme moléculaire habituelle (H2O), soit sous la forme d'ions hydroxyles (OH) attachés aux silicates des roches.

Ainsi, l'eau peut faire partie de la formule chimique de certains minéraux, où l'ion OH est intégré dans la structure cristalline. C'est le cas dans les amphiboles, la lawsonite, la chlorite, etc. Ces deux derniers minéraux contiennent ainsi 14 % d'eau. La présence de cette eau et des gaz dissous dans le magma va jouer un rôle considérable dans le style éruptif des volcans (voir article suivant).

 

volcanisme,arc antillais,subduction,dorsale,points chauds

Variation de la température

dans le manteau avec la profondeur

(d'après Thomas, 2010)

 

On sait maintenant que la vitesse avec laquelle une plaque tectonique plonge sous une autre est proportionnelle à la largeur de cette plaque. Cette relation a été découverte par Woutter Schellart de la Monash University (Melbourne, Australie) à l'aide d'un modèle numérique reproduisant en 3D des zones de subduction. Elle permet de comprendre par exemple pourquoi la plaque de Farallon, qui plongeait sous l'Amérique du Sud à une vitesse de 10 cm par an il y a 50 millions d'années, ne s'enfonce plus que  de 2 cm par an aujourd'hui. Car, dans le même temps, la zone  de subduction qui s'étendait sur 14 000 km du nord au sud, s'est réduite à 1400 km. La relation mise en évidence par Woutter Schellart modifie ainsi la vision classique de la tectonique des plaques selon laquelle le déplacement des plaques est le reflet en surface des mouvements de matière au sein du manteau terrestre. Cette nouvelle étude révèle qu'en fait la plaque elle-même exerce un contrôle sur sa propre dynamique (Science & Vie, n° 1120, janvier 2011).

 

volcanisme,arc antillais,subduction,dorsale,points chauds

La convection dans le manteau

(d'après Thomas, 2010)

 

Au niveau de la dorsale médio-atlantique, se produit un mouvement ascendant de magma sous forme d'éruptions généralement sous-marines. Ce magma est principalement constitué de silicium, d'oxygène et de magnésium (bridgmanite). Ces roches nouvelles se déforment au cours des temps géologiques en produisant des courants de convection qui animent le manteau tout entier. Cette convection qui transporte la chaleur interne de la Terre est le moteur de la dérive des continents. Elles alimentent constamment la croûte en formant une sorte de tapis roulant divergeant de part et d'autre de la dorsale et qui repousse les plaques océaniques américaines vers l'Ouest et les plaques océaniques euroasiatique et africaine vers l'Est.

 

volcanisme antillais002_Ringwood-1.jpg
Schéma général de l'expansion des fonds océaniques
(d'après Ringwood)
 
 
Quel est le phénomène qui explique les mouvements de convection du manteau ?
(Sciences et Avenir, n° 806 avril 2014 p. 13)

En fait, ce sont les anomalies de certaines roches qui rendent possible les mouvements de convection du manteau. Pour que l'immense manteau terrestre, fait entièrement de roches, se déplace de quelques centimètres par an (entre 2 et 9 cm) et permette le mouvement des plaques tectoniques, il faut impérativement qu'il existe de microscopiques aspérités entre les millions de grains composant les roches (image ci-dessous). C'est la surprenante conclusion d'une équipe conjointe de plusieurs universités françaises (Lille-I, Nancy, Metz, Montpellier), publiée dans la revue Nature en avril 2014.

 

Olivine-aspérités-entre-les-grains-450.jpg

Les aspérités entre les grains composant l'olivine donnent des propriétés de plasticité au manteau.

 

Cette « plasticité » du manteau était à ce jour une énigme. En effet, les propriétés physiques du minéral le plus abondant dans le manteau, l'olivine, empêchent théoriquement ces mouvements. Sa structure, très régulière et très ordonnée, est incompatible avec l'idée selon laquelle un matériau doit avoir des défauts (se traduisant par des faiblesses mécaniques) pour que son comportement soit plastique. Mais les scientifiques ont observé pour la première fois des défauts au niveau des joints de grains du minéral, appelés « désinclinaisons ». Et lorsqu'ils les ont intégrés dans la modélisation mathématique du comportement de la roche, ils ont conclu que ces défauts sont capables à eux seuls d'expliquer les mouvements dans le manteau.

 

volcanisme,arc antillais,subduction,dorsale,points chauds

Dynamique de la dorsale médio-atlantique

(d'après Briais et all 2010)


 

LE MANTEAU SUPÉRIEUR (35 à 660 km ; 27% du volume de la terre)

 

À mesure que les pressions et les températures augmentent avec la profondeur, les éléments constitutifs du manteau s'arrangent en différentes structures cristallines (les minéraux) qui forment des couches distinctes. Trois minéraux, - l'olivine, la spinelle modifiée et la spinelle – donnent aux couches du manteau supérieur leur nom respectif.

 

LE MANTEAU INFÉRIEUR (660 à 2900 km ; 56% du volume de la terre)

 

Il est formé de deux couches : la pérovskite et la postpérovskite.

 

Couche de pérovskite. Le minéral qui domine cette couche (70% de la masse) est un silicate de magnésium appartenant à une famille de structures cristallines nommées pérovskites ou "(Mg,Fe)SiO3-pérovskite". C'est le matériau le plus abondant sur terre (38% de la masse du manteau et 70% de la masse du manteau inférieur) et connu depuis 2014 sous le nom de bridgmanite en hommage au minéralogiste Bridgmann. Existant à plus de 660 km de profondeur et sous des pressions énormes de l'ordre de 230 000 bars, la bridgmanite est inaccessible aux forages et hautement instable sous les conditions naturelles de surface. Ses propriétés physico-chimiques due à sa structure en feuillets déterminent une grande partie de la dynamique planétaire : les mouvements de convection qui la traversent sont à l'origine de la tectonique des plaques.

 

Couche de postpérovskite. Dans les conditions de pression et de température régnant dans les 300 derniers kilomètres du manteau avant le noyau, la pérovskite (1) se transforme en une nouvelle structure : la postpérovskite dont la structure cristalline est encore plus dense que celle de la pérovskite de 1 à 1,5 %.

 

(1) La pérovskite intéresse beaucoup les chercheurs en photovoltaïque.  Il semble que l'avenir du solaire passera par la pérovskite. Ce minéral cristallin n'a révélé ses vertus énergétiques qu'en 2012. Mais depuis, il révolutionne le secteur. Ce matériau absorbe en effet la lumière dix fois mieux que le silicium qui équipe 85 % des panneaux solaires.

Son rendement énergétique, de 19 % en laboratoire, talonne son concurrent (à 26 %), mais il serait cinq fois moins cher à produire. Ce matériau devrait s'imposer dans le secteur des énergies renouvelables d'ici à la fin de la décennie. Et permettre d'accélérer la transition énergétique.

 

LE NOYAU (2900 à 6400 km ; 16% du volume de la terre)

 

Le noyau de la Terre est principalement composé de fer, liquide dans le noyau externe et solide dans le noyau interne (la graine, 0,5% du volume de la terre). Comme dans le manteau, la convection brasse le noyau externe, mais en raison de la densité beaucoup plus élevée du noyau, il y a très peu de mélange avec le manteau. Une couche plus dense s'intercale entre la base du manteau liquide et la graine. On pense que c'est la convection dans le noyau externe de fer liquide qui engendre le champ magnétique terrestre, lequel contribue à protéger la vie des rayons cosmiques et du vent solaire.

On peut se demander pourquoi la graine dont la température dépasse les 6000°C présente une structure solide. Ce phénomène est dû à la structure hexagonale compacte de ses molécules de fer comme l'ont démontré des géophysiciens suédois en 2017.

 

Mais quel est le processus qui explique le champ magnétique terrestre ? (Science & Vie, n° 1171, avril 2015 p. 26)

 

Longtemps on n'a pu expliquer ce phénomène. Et c'est tout récemment (2014) qu'une équipe américaine a proposé une hypothèse : en fait, le champ magnétique terrestre naîtrait des chocs d'électrons.

 

Si les physiciens ne parvenaient pas à reproduire la naissance du champ magnétique de la Terre, c'est parce qu'ils avaient sous-estimé la violence des chocs entre électrons. Ronald Cohen et son équipe de la Carnegie Institution de Washington (États-Unis) ont modélisé le comportement du fer à haute température au niveau atomique et se sont aperçus que les électrons ne cessent de s'éjecter les uns les autres, s'opposant à la formation d'un courant électrique... Dans le  noyau terrestre, les électrons du fer fondu ralentissent ainsi les transferts de chaleur et provoquent la formation de mouvements de convection : des courants ascendants et descendants qui donnent naissance à un champ magnétique. Jusque-là, les modèles qui ne tenaient compte que des vibrations des atomes et des interactions moyennes des électrons ne parvenaient pas à former le moindre tourbillon de métal... et par conséquent, pas la moindre ligne de champ magnétique.

 

En fait, le fer du noyau remonterait dans le manteau comme semblent l'avoir montré (Nature, année 2012) par des expériences de laboratoire deux géophysiciens de l'université Yale (États-Unis). Ils ont réussi à montrer que la couche D" (prononcez « D seconde ») qui sépare, à 2900 km sous nos pieds, le manteau terrestre solide du noyau liquide et dont l'épaisseur serait inférieure à 200 km, ne serait pas totalement étanche : elle présenterait des remontées du noyau, des « blob » de fer liquide qui viendraient pénétrer les interstices de la roche sur 50 à 100 km.

 

Ces intrusions de fer pourraient jouer un rôle important dans les variations du champ magnétique terrestre. En effet, la présence de fer - métal conducteur d'électricité - influe sur la conductivité électrique du noyau, et ce sont les courants  électriques du noyau qui alimentent et entretiennent le champ magnétique (voir plus haut l'ajout de mars 2015).

 

Pour parvenir à ce résultat rapporté par la revue Sciences et Avenir n° 792 (février 2013), les géophysiciens ont pris un cristal analogue à ceux que l'on suppose abondants dans le manteau de la Terre, à base de silicates de magnésium et de fer. Ils l'ont soumis à la pression et à la température qui règnent au niveau de la couche D" (135 gigapascals. Soit 1 350 000 fois la pression atmosphérique, et plus de 3200°C). Au bout de quelques minutes, les géophysiciens ont constaté la présence de bulles de fer liquides dans la roche solide (en médaillon). Les chercheurs supposent qu'il se passe la même chose à grande échelle dans la couche D".

 

volcanisme,arc antillais,subduction,dorsale,points chauds

Structure-terre_01-1.jpg

Mouvements de convection au sein du globe terrestre

(d'après D. Sasselov & D. Valencia, Pour la Science, oct. 2010)

 

Chose étonnante, dans toutes ces sphères emboîtées et concentriques, la graine présente une structure asymétrique qu'on appelle la translation de la graine. Les couches superficielles de ses hémisphères "Ouest" (par convention sous l'Amérique) et "Est" (par convention sous l'Asie) n'ont pas les mêmes propriétés sismiques : les ondes sont plus lentes et moins atténuées à l'Ouest. Marc Monnereau & all. (Science, en ligne, 15 avril 2010) ont montré que cette dissymétrie était due à une différence de taille des cristaux de fer formant la graine, elle-même expliquée par un "vent de matière" orienté d'Ouest en Est.

 

L'hémisphère Ouest, froid et dense, décale vers lui le centre de masse de la graine. De ce fait, la rotation de celle-ci est décalée par rapport à son centre géométrique, et ses frontières Est et Ouest se décalent par rapport à la région sphérique (en pointillé sur la figure) où, étant donné la température et la pression, le fer est solide. Il en résulte une cristallisation du fer à l'Ouest, une fusion à l'Est et un déplacement progressif des couches de fer de l'Ouest vers l'Est. À mesure de ce déplacement, les cristaux de fer croissent en "absorbant" leurs voisins, pour atteindre une taille de cinq à dix kilomètres  au niveau de la frontière Est. Arrivé à cette frontière, le fer fond et retourne au noyau liquide. Ainsi, la graine se renouvelle en continu.  Reste à expliquer pourquoi l'hémisphère Ouest est froid et dense. Et à trancher avec d'autres modèles qui expliquent la dissymétrie des propriétés sismiques par un couplage thermique entre la graine et le manteau via le noyau liquide, ou par une interaction avec le champ magnétique de la Terre.

 

Ainsi, alors que son âge dépasse les 4,5 milliards d'années, la Terre renouvellerait son cœur en à peine 100 millions d'années.

 

La théorie de la translation de la graine expliquerait l'existence de la couche dense entre graine et base du noyau liquide, l'anisotropie élastique démontrée par le fait que les ondes sismiques voyagent plus vite dans la direction nord-sud que dans la direction ouest-est ainsi que l'asymétrie hémisphérique entre l'ouest et l'est. (voir également Science & Vie, nov. 2010).

 

En outre, la graine tourne à vitesse variable, de sorte que les battements du cœur de la Terre ne sont pas réguliers (Science & Vie, juillet 2013, p. 30).

 

Depuis les années 1990, les sismologues soupçonnent la "graine" de tourner sur elle-même plus vite que le reste du globe. Mais sans parvenir à s'accorder sur sa vitesse de rotation. Et pour cause : Hrvoje Tkalcic (université de Canberra, Australie) a découvert que cette vitesse n'est pas constante !

 

Pour l'affirmer, il a analysé des doublets de séismes, ces tremblements de terre "jumeaux" qui se produisent à des semaines ou des années d'intervalle, générant des ondes sismiques qui empruntennt le le même chemin au sein du globe. En étudiant les infimes différences de temps de parcours des ondes qui ont traversé la graine, le géophysicien en a conclu que la vitesse de rotation varie au cours du temps. Elle a accéléré dans les années 1970, ralenti dans les années 1980, puis repris da la vitesse dans les années 1990 et 2000.

 

graine-1.jpg
Asymétrie de la graine

 

La graine solide de la Terre tourne autour de son centre de masse (0), décalé par rapport à son centre géométrique (C). De ce fait, elle se décale par rapport au domaine où le fer devrait être solide (en pointillés). Cela crée une cristallisation à l'Ouest et une fusion à l'Est, et un flux de matière vers l'Est. Les couleurs représentent l'âge des couches (Pour la Science, n° 392, juin 2010).

 

La rotation du noyau terrestre enfin comprise ? (Pour la Science, n° 434, décembre 2013)

 

La Terre tourne sur elle-même vers l'Est en quasiment 24 heures. Il n'en va pas de même de son noyau. Le noyau interne (la graine), en fer solide, tourne dans le même sens, mais plus vite. Le noyau externe, constitué de fer liquide, tourne pour sa part en sens inverse, vers l'Ouest ! Philip Livermore, de l'Université de Leeds, en Grande-Bretagne, et ses collègues ont montré que ces mouvements du noyau sont liés et contrôlés par le champ magnétique terrestre.

 

La circulation du fer dans le noyau liquide engendre, par effet dynamo, le champ magnétique terrestre (de l'ordre de 10-4 tesla à la surface de la planète). Les géophysiciens ont observé depuis longtemps que ce champ se décale vers l'Ouest, ce qui suggère que le noyau liquide est animé d'un mouvement similaire. En outre, l'analyse de l'aimantation rémanente des roches montre que sur les 3 000 dernières années, le champ magnétique s'est déplacé vers l'Ouest à une vitesse variable, mais aussi vers l'Est. Rappelons qu'en se refroidissant après avoir été chauffées, certaines roches enregistrent l'orientation du moment magnétique : c'est l'aimantation rémanente.

 

L'étude des ondes sismiques qui se propagent dans tout le globe terrestre a par ailleurs révélé que le noyau interne (la graine) tourne vers l'Est et devance en moyenne le mouvement de la surface de la planète de quelques degrés par an.

 

P. Livermore et ses collègues se sont intéressés à l'interaction des composantes du noyau et du champ magnétique. Ils ont mis au point une simulation en trois dimensions du centre de la planète qui permet d'étudier des scénarios où la viscosité du fer liquide (qui n'est pas précisément connue) est 100 fois inférieure à celle des simulations précédentes. Cette viscosité joue un rôle crucial dans la dynamique du fluide ferreux et, par conséquent, sur l'effet dynamo et la structure du champ magnétique.

 

Avec leur simulation, les géologues ont ainsi mis en évidence que, dans des régimes de faible viscosité, certains couples de forces deviennent importants. Ces couples d'axe Nord-Sud agissent, les uns sur la partie la plus externe du noyau liquide, les autres dans le noyau solide. Ils ont la même intensité, mais des sens opposés. De quoi expliquer les mouvements opposés des noyaux interne et externe ?

 

P. W. Livermore et al., PNAS, en ligne, 16 septembre 2013

 

Noyau-solide-et-noyau-liquide-de-la-terre-450.jpg

 

Ajout du 5 juin 2016 : Le noyau de la terre est plus jeune que sa surface (Sciences et Avenir n° 832, juin 2016, p. 56.)

 

En appliquant la relativité générale à l'intérieur de la Terre, une équipe danoise a conclut que son cœur serait plus jeune que sa surface de deux ans et demi. Une conclusion publiée dans l'édition de mai 2016 de l'European Journal of Physics. Mais comment imaginer que l'intérieur de la Terre se soit formé quelque temps après la croûte, sur laquelle nous marchons ?

 

Ce paradoxe s'explique par la théorie de la relativité générale qui veut qu'à proximité d'une masse très dense comme la graine de la Terre, le temps s'écoule plus lentement. Il s'agit en fait d'un paradoxe connu de longue date. Richard Feynman — lauréat du prix Nobel de physique en 1965 et décédé en 1988 —, l'enseignait déjà. Mais Feynman avait estimé la différence d'âge entre superficie et profondeur à un jour ou deux. Le calcul de l'équipe danoise montre un écart bien plus important. En fait, ce paradoxe ne remet aucunement en question les connaissances des géophysiciens sur la formation de la Terre, une planète dont l'âge est estimé aujourd'hui à 4,56 milliards d'années, et qui a grossi progressivement par accrétion — c'est-à-dire grâce à l'agglomération de grains de matière. Mais en revanche, si l'on tient compte des conséquences étonnantes de la relativité générale d'Einstein, il faut considérer que la masse modifie l'espace et le temps.

 

La densité des roches s'accroît avec la profondeur

À proximité d'une masse importante comme un astre dense, l'espace se courbe, un peu comme si, en deux dimensions, un tissu élastique se tend sous le poids d'une boule de métal. Quant au temps, il s'écoule plus lentement. Or, les géophysiciens ne cessent d'améliorer leur modèle de l'intérieur de la Terre. Ils savent que la densité des roches augmente avec la profondeur. La matière y présente un arrangement compact que l'on ne rencontre pas en surface. Ainsi, la graine, cette sphère centrale très dense de 1200 km de rayon, développe un champ de gravité important. Près de la graine, le temps devrait donc s'écouler plus lentement. La relativité générale n'ayant jamais été prise en défaut, si une horloge était placée à la profondeur de la graine, elle marquerait moins de secondes au cours du même laps de temps qu'une horloge placée à la surface. Et c'est ainsi que l'on parvient à estimer l'intérieur de la Terre plus jeune que sa surface. Même si en pratique, deux ans et demi ne sont pas significatif par rapport à l'âge de la planète.

 

Quant à l'écart entre ce qu'enseignait Richard Feynman et ce qu'ont découvert les Danois, il s'explique par le fait que ces derniers ont rigoureusement utilisé le dernier modèle de l'intérieur de la Terre où la densité de matière n'est pas homogène à une même profondeur.

 

Il y a de la vie dans les profondeurs (Sciences et Avenir, août 2016, p. 33)

 

Des chercheurs français et italiens ont mis en évidence pour la première fois, en 2012, l'existence d'une vie intra-terrestre le long de la ride médio-atlantique : ces roches de la croûte terrestre se sont révélé abriter une vie diverse et active, qui pourrait bien représenter l'habitat microbien le plus important de notre planète ! La lithosphère, poreuse et fracturée, est affectée par d'intenses circulations hydrothermales, soit un environnement semblable à celui de notre Terre il y a plus de 3,8 milliards d'années. Les bactéries pourraient être des descendants des premières formes de vie terrestre.

Le volcanisme dans l'Arc antillais (1)

Rappels de la structure du globe terrestre. Différents types de volcans et d'éruption.

Lire la suite

Roches volcaniques de l'Arc antillais

Roches volcaniques dans l'Arc antillais

Lire la suite

La Soufrière de Guadeloupe

La Soufrière de Guadeloupe avant, pendant et après l'éruption phréatique de 1976

 

Lire la suite

La Soufrière de Guadeloupe : séismes 1975-1977

Séismes associés à l'éruption phréatique de la Soufrière de Guadeloupe de 1976

 

Lire la suite

01/07/2010

La Montagne Pelée (Martinique)

La Montagne Pelée (Martinique) et l'éruption catastrophique de 1902

 

 

Lire la suite

28/06/2010

La Soufrière de Saint-Vincent

La Soufrière de Saint-Vincent et l'éruption de 1979

Lire la suite

Soufrière à Sainte-Lucie

Manifestations volcaniques de Sainte-Lucie et de la Dominique

Lire la suite

25/06/2010

La Soufrière de Montserrat

La Soufrière de Monserrat et les éruptions successives de 1995 à 2010

Lire la suite

24/06/2010

Islande : geysers et autres manifestations volcaniques

pseudocratère1.jpgGeysers, fumerolles, solfatares, hordinos et mares de boue d'Islande

 

par André Guyard

(dernière mise à jour : 20 novembre 2015)

 

En juillet 2008, un groupe de randonneurs appartenant à l'USN Sports Loisirs a parcouru les paysages désolés de l'Islande à la découverte de phénomènes volcaniques actifs.

 

Le groupe va découvrir un univers de glace, d'eau et de feu.

 

Glacier_6803.jpg
Islande : un pays de glace
Landmannalaugar_6735.jpg
Islande : un pays de volcans et de laves
(Ici le Landmannalaugar)

 

Solfatare_7119.jpg
Solfatares : des bouches à soufre et à cinabre
Basalte_6996.jpg
Le basalte en se refroidissant se débite en colonnes hexagonales
 

geyser,islande,volcanisme,solfatares,hordinos,orgues basaltiques

Orgues basaltiques

Cliché Orsolya & Erlend Haarberg

 

Mais comment se forment les orgues basaltiques ?

 

Il s'agit, bien sûr, d'une conséquence du refroidissement d'anciennes coulées de lave. En 2015, Martin Hofmann, de l'université technique de Dresde, en Allemagne, et ses collègues ont modélisé la formation de tels motifs hexagonaux qu'on appelle orgues basaltiques.

Lorsque de la lave se refroidit ou lorsque de la boue sèche, la partie supérieure se contracte et se fissure, ce qui libère de l'énergie liée à la tension mécanique. Ces failles sont disposées, a priori, de façon aléatoire. Cependant, comme elles libèrent surtout la tension perpendiculaire à leur direction, elles se connectent en général à angle droit : on parle de jonction T.

Dans des milieux qui sont asséchés ou gelés périodiquement, on observe que les jonctions T se déforment et se déplacent, ce qui les transforme en jonctions Y aux angles de 120°. Les motifs hexagonaux en résultent.

Dans le basalte, des jonctions T se forment en surface, mais la transition entre jonctions T et Y se produit en profondeur, alors que les fractures se propagent dans la lave se refroidissant.

Martin Hofmann et ses collègues ont calculé l'énergie libérée lorsqu'une fracture se propage. Ils ont supposé que la forme des jonctions pouvait changer. Ils montrent ainsi que si la jonction se déforme de T vers Y, l'énergie libérée augmente de 7%. La tension dans le basalte est ainsi mieux dissipée et la configuration plus stable. Des simulations numériques ont confirmé les résultats des chercheurs.

Phys. Rev. Lett., vol. 115, 154301, 2015

 

Grotte_7004.jpg
Le refroidissement de surface ménage des tunnels sous-basaltiques
Dettifoss_6965.jpg
Chutes de Dettifoss
Sellfoss_6973.jpg
Sellfoss : une chute de plus 800 m de long

 

Magnusarfoss_6779.jpg
Chutes de Magnudarfoss dans les orgues basaltiques
 
Gullfoss_7330.jpg
Gullfoss : une chute royale

 

Parmi les différentes manifestations volcaniques rencontrées : fumerolles, solfatares, sources chaudes, hordinos, mares de boue, etc. les plus spectaculaires sont certainement le fait des geysers.

 

Qu'est-ce qu'un geyser ?

 

Un geyser est une source qui jaillit par intermittence en projetant de l'eau chaude et de la vapeur à haute température. Le terme geyser provient de Geysir, le nom du plus célèbre geyser islandais, dont l'étymologie est liée au verbe islandais gjósa (en français jaillir).

 

Or le grand geyser de Geysir ne fonctionne plus de façon naturelle. Seuls des visiteurs illustres ont droit à sa manifestation dopée par l'usage de détergents précipités dans le conduit. Mais les touristes ordinaires peuvent admirer son voisin le Strokkur qui se manifeste toutes les 8-10 min.

 

Comment ça marche ?

 

L'activité des geysers, comme celle de toutes les sources chaudes, est liée à une infiltration d'eau en profondeur.

 

Dans les régions volcaniques, l'eau est chauffée au contact des roches, elles-mêmes chauffées par le magma en fusion.

 

Dans les régions non volcaniques, l'eau est chauffée par l'action du gradient géothermique, la température et la pression augmentant avec la profondeur.

 

Par convection, l'eau chauffée et mise sous pression rejaillit alors vers la surface. Les geysers diffèrent des simples sources chaudes par la structure géologique souterraine. L'orifice de surface est généralement étroit communiquant par des conduits étroits et résistants qui mènent à d'imposants réservoirs d'eau souterrains.

 

L'eau de surface s'infiltre par gravité dans le réservoir du geyser où elle s'accumule et monte dans le conduit. La pression dépend de la longueur de la cheminée. Plus la pression est grande, plus la température d'ébullition est élevée. L'eau du conduit va faire pression sur l'eau du réservoir et augmentera la température d'ébullition. Au bout d'un certain temps, la poche magmatique sera portée à une température suffisante pour entraîner la vaporisation d'une partie de l'eau et créant ainsi une bulle de vapeur. Cette bulle emprunte la seule issue qui lui est offerte : la cheminée où elle s'engouffre, refoulant vers le haut l'eau du conduit qui n'exercera plus de pression sur l'eau du réservoir. Cette dernière va entrer en ébullition et pousser toute l'eau du geyser à l'extérieur.

 

Strokkur.jpg
La bouche du Strokkur commence à frémir
Strokkur1.jpg
La bulle pousse l'eau qui gonfle la surface en coupole

geyser,islande,volcanisme,solfatares,hordinos

La bulle est prête à éclater


Islande_Geysir-Strokkur.jpg

 

Le Strokkur en pleine action

 

En fait, il existe deux types de geysers. Le geyser dit « fontaine » est terminé par un cône étroit, avec un conduit très fin. Lorsqu'une éruption se produit et qu'une colonne d'eau jaillit, elle est en fait expulsée par la pression due à l'étroitesse du conduit. C'est le cas par exemple d'Old Faithful à Yellostone.

 

L'autre type de geyser est le geyser dit « gazeux ». Il s'agit généralement d'une source chaude qui, lorsque du gaz est expulsé, fait remonter les bulles d'eau qui explosent au contact de la surface et qui créent une large colonne d'eau, souvent de courte durée. C'est le cas du Strokkur que nous avons pu observer ici.

 

 

Fumerolles et solfatares

 

 

Les fumerolles sont des émanations de gaz, en particulier de la vapeur d'eau ou de dioxyde de carbone qui s'échappent de crevasses ou de cavités d'origine volcanique.

 

 

Les solfatares sont des fumerolles rejetant du soufre.

 

 

Mares de boues

 

 

Une mare de boue est un type de source d'eau chaude ou de fumerolle, brassant des sédiments (argile d'origine volcanique, oxyde de fer, soufre...) à sa surface, et caractérisée par de perpétuelles remontées de bulles de gaz à sa surface.

 

 

Mofettes

 

 

Les mofettes sont de petites émanations de dioxyde de carbone qui s'échappent de fissures et des trous d'origine volcaniques d'où s'échappe du gaz carbonique. Parfois, les mofettes brassent des sédiments à leur surface.

 

 

Hornitos

 

 

Les hornitos sont des cônes volcaniques de dégazage, créés lors de retombées de fragments de laves incandescents entre eux.

 

Ces différents phénomènes sont visibles sur la vidéo ci-dessous :

 

Phénomènes volcaniques

 

Les Islandais ont su profiter de toute cette chaleur interne et exploitent cette source d'énergie pour procurer aux habitants de l'eau chaude, alimenter des serres avec production de fleurs, de légumes et de fruits. Eh, oui ! il pousse des bananiers en Islande. D'une façon plus importante, la géothermie permet la génération d'électricité pour les industries métallurgiques et la consommation domestique.

 

geothermie_7335.jpg
Exploitation de la géothermie

geyser,islande,volcanisme,solfatares,hordinos

Centrale géothermique du volcan Krafla

(© Schutterstock/Darren Baker)


 
C'est à sa position géographique sur la dorsale médio-atlantique qui émerge à l'air libre en Islande que l'île doit ce tempérament de feu.

geyser,islande,volcanisme,solfatares,hordinos

 

L'Islande est située à l'extrémité nord de la dorsale médio-atlantique qui court sur 15 000 km au milieu du plancher de l'océan Atlantique et dont l'île constitue la seule partie émergée. Le long des dorsales océaniques, deux plaques tectoniques s'écartent et le manteau terrestre sous-jacent va se figer pour former une jeune croûte océanique, la lithosphère. La dorsale médio-atlantique forme ainsi une chaîne continue de volcans sous-marins émettant une lave visqueuse (plus riche en silice) de type andésite. Ainsi l'Islande est déchirée par la séparation des deux plaques : la plaque nord-américaine qui s'éloigne vers l'ouest et la plaque eurasienne qui s'éloigne vers l'est à la vitesse de 2 cm par an.

 

À ce phénomène de l'écartement des deux plaques océaniques, un point chaud s'y superpose.

 

Un point chaud est marqué par la remontée d'un panache volcanique issu de la base du manteau inférieur, c'est-à-dire à près de 2900 km. La lave des volcans de point chaud est très fluide et formée de basalte (pauvre en silice). Ces points chauds sont fixes et indépendants du mouvement des plaques. Et, au fur et à mesure de l'avancée de la plaque tectonique océanique, celle-ci est perforée par un nouveau volcan à l'aplomb du panache volcanique.

 

L'Islande résulte ainsi de la superposition de ces laves andésitiques ou basaltiques. Pas moins de 130 volcans coexistent en Islande, dont certains sont recouverrts par des glaciers (volcans sous-glaciaires).
islande.jpg
Au nord de la dorsale médio-atlantique : l'Islande
(document Google Earth)
 
Sources :
 
Photos et vidéo : André Guyard (Islande, juillet 2008).
 
Thordarson, T. and G. Larsen (2007) - Volcanism in Iceland in historical time : Volcano types, éruption styles and eruptive history, Journal of Geodynamics, janvier 2007.
Voir également : les volcans islandais (Vu du ciel France 3)
 

 

23/06/2010

Éruption du volcan islandais Eyjafjöll

Islande_6689-logo.jpgÉruption du volcan islandais Eyjafjöll

 

par André Guyard

(dernière mise à jour 23/08/2014)

 

L'Islande est située au milieu de l'Atlantique sur la dorsale médio-océanique, à la divergence des plaques tectoniques  océaniques eurasiatique et américaine. Cette situation exceptionnelle en fait l'une des régions tectoniques les plus actives du monde avec  130 volcans et 600 sources d'eaux chaudes ! L'île se situe aussi au niveau d'un point chaud qui émerge entre deux plaques tectoniques. Ainsi, elle se trouve soumise à deux influences volcaniques superposées. (voir dans ce même blog : Islande, geysers et autres manifestations volcaniques.)

 

Qu'est-ce qu'un point chaud ? Il s'agit d'une anomalie thermique située dans les profondeurs du manteau terrestre, qui fait remonter du magma en surface. C'est ce qu'on appelle le panache profond dans le cas de l'Islande de 2900 km et qui remonte en surface déchirant la croûte terrestre. L'originalité du cas islandais, c'est que cette déchirure se produit justement là où les deux plaques nord-américaine et eurasiatique s'écartent au niveau de la dorsale médio-atlantique.

 

En juillet 2008, j'ai eu l'occasion d'arpenter ce beau pays avec les randonneurs de l'US Novillars : voir Islande, geysers et autres manifestations volcaniques dans ce même blog.

 

Profitant de la présence de ce chauffage central naturel, l'Islande exploite ses ressources géothermiques pour produire son électricité et alimenter son réseau de chaleur. Mais le volcanisme a souvent un revers : une nouvelle éruption fissurale à proximité du glacier Eyjafjallajökull inquiète les volcanologues.

 

Islande_eruption.jpg
Situation du volcan Eyjafjöll

(cliché Google Earth)

 

Le volcan islandais Eyjafjöll (ou Eyafjalla) situé dans le sud de l'île, à seulement 160 km au sud-est de la capitale Reykjavik est un strato-volcan composé d'un empilement d'une alternance de couches de cendres, de lave et de roches éjectées par les éruptions antérieures. Il est entré en éruption dans la nuit du samedi 20 mars 2010. Recouvert par une calotte glaciaire : l'Eyjafjallajökull, ce volcan culmine à 1 666 mètres d'altitude.  Au cours des 1100 dernières années, le volcan ne s'est réveillé que trois fois, la dernière éruption de l'Eyjafjöll remontant à 1821. Elle avait alors duré plus d'un an.

 

Eyjafjöll_30-1.jpg
Cliché satellite. On voit l'émission du panache de fumée au sud de l'Islande

 

Précédée par toute une série de secousses sismiques sous le glacier Eyjafjallajökull, (près de 3000 entre le 3 et le 5 mars), la première phase éruptive fut effusive avec une lave de basalte à olivine d'origine profonde (25 km). Après un arrêt temporaire de la migration du magma vers 6 à 8 km de profondeur, le magma a émergé par une dizaine de fontaines de lave de style hawaïen, d'une hauteur d'une centaine de mètres, le long d'une fissure latérale au col de Fimmvördu.

 

Islande2.jpg
Connexions possibles entre Eyjafjöll et Katla
(document "Pour la Science - juin 2010)
 

Le volcan est entré le 14 avril dans une deuxième phase explosive caractérisée cette fois par un magma acide, de type trachyandésitique résultant d'un mélange de basalte à olivine et de dacites plus superficielles. Ce mélange serait ensuite remonté dans le cratère historique de l'Eyjafjöll. Le contact de la lave à plus de 1000 °C et de la glace a provoqué des explosions et l'émission jusquà 11 000 m d'altitude d'immenses volutes de vapeur d'eau et de gaz chargés de poussières magmatiques. qu'on appelle téphras. C'est la confluence de deux anticyclones, l'un positionné entre Terre Neuve et l'Islande et l'autre localisé sur l'Europe occidentale qui a entraîné lles masses d'air dans le sens des aiguilles d'une montre. Poussé par ces vents, le panache s'est dirigé vers l'Europe.

 

Le caractère explosif d'un volcan est lié au dégazage et à la viscosité du magma trachyandésitique. Quand le magma monte dans le cheminée du volcan, le mélange de gaz et de magma se dilate, ce qui accélère son ascension, accroît la pression jusqu'à faire passer l'éruption en régime explosif. Dans le cas de l'Eyjafjöll, les explosions sont dues à la fois à la nature acide du magma que la présence de silice rend visqueux et au contact magma-glace.

Géologie_Volcan sous-glaciaire-1.jpg

Schéma de l'éruption d'un volcan sous-glaciaire

 

 

Volcan Eyjafjöll-1.jpg
Image infrarouge du glacier Eyjafjallajökull qui cache le volcan
Photo © : NASA/JPL/EO-1 Mission/GSFC/Ashley Davies

Le samedi 17 avril 2010 , l'instrument ALI du satellite EO-1 a pris une image infrarouge du glacier islandais Eyjafjallajökull qui cache le volcan (image ci-dessus). Un léger nuage surmonte le glacier.

Eyjafjöll_04-1.jpg
La chaleur a permis au volcan Eyjafjöll de perforer la chappe de glace qui le recouvrait
 
Eyjafjöll_25-1.jpg
La glace surchauffée se sublime en vapeur d'eau

 

Eyjafjöll_12-1.jpg

Les cendres émises se mêlent à la vapeur d'eau

 

Eyjafjöll_09-1.jpg
Eyjafjöll_10-1.jpg
Le nuage de cendres et de vapeur d'eau s'élève à haute altitude
 
Eyjafjöll_19-1.jpg
Eyjafjöll_32-1.jpg
Le magma est arrivé en surface
 

islande,volcan,éruption volcanique,eyjafjöll

Soumise à une pluie de cendres et de bombes,

la surface du glacier a changé de couleur

Eyjafjöll_02-1.jpg
La nuit, le spectacle est de toute beauté

 

Afin de protéger les populations, 600 personnes demeurant entre la localité agricole de Hvolsvollur et le village de pêcheurs de Vik ont été évacuées hâtivement.

 

Eyjafjöll_01-1.jpg

Quelques villages sont menacés

 

Les risques encourus sont multiples :

* projections de cendres et de lave pouvant affecter notamment le transport aérien (voir plus bas),

* émanations gazeuses mortelles (notamment pour le bétail),

* inondations brutales et importantes, conséquence de la fonte du glacier qui recouvre le volcan.

Ce dernier risque, de loin le plus inquiétant, est un lahar ou jökulhlaup en islandais, ce qui signifie "course de glacier". La fonte du glacier sous l'effet de la chaleur engendre une coulée de matériaux volcaniques (débris, boue). On parle alors de lahars syno-éruptifs appelés aussi lahars primaires ou lahars chauds. On se rappelle que la formation d'un lahar suite à l'éruption du volcan Nevado del Ruiz en 1985 dans la Cordillère des Andes avait entraîné la mort de 25 000 personnes. C'est pourquoi, un état d'urgence a été déclaré dans la zone, même si aucun blessé ou dégât n'est à déplorer.

 

Eyjafjöll.jpg

Le nuage de cendres

volcan.jpg

Photos du volcan Eyjafjöll prise le samedi 17 avril 2010

En haut, une photo en infrarouge.

En bas, une photo du volcan tel qu'il est visible depuis le ciel.

(Crédit photo : © Nasa)

 

On distingue sur ces clichés le nuage de cendres, au centre, la neige des glaciers (en blanc en bas et en violet en haut) ainsi que les dépôts de cendres, visibles en gris en haut. Ces cendres sont chargées électriquement, ce qui entraînent la formation de nombreux éclairs au-dessus du volcan.

 

Mais ce qui inquiète les Européens, c'est ce nuage de cendres volcaniques, poussé par les vents d'Ouest qui se répand sur l'Europe entraînant la suspension des vols à partir et en direction de nombreux aéroports.

 

ash_cloud2.jpg
Le nuage de cendres volcaniques (en noir) dérive vers le Royaume-Uni
(Image: EUMETSAT)
 

Le réveil du volcan Katla suscite l'inquiétude

 

Pour le moment, les volcanologues sont prudents car cette petite éruption fissurale, qui ne montre aucun signe d'affaiblissement, pourrait déclencher celle du volcan voisin, le Katla. Dix fois plus important que l'Eyjafjöll, il a la réputation d'être un des volcans les plus dangereux d'Islande. Caché sous le glacier Myrdalsjökull dans le Sud de l'île, le Katla est entré pour la dernière fois en éruption en 1918. Une éruption du volcan Katla et le contact du magma avec la glace déclencherait une éruption explosive qui émettrait un énorme nuage de cendres et surtout une débâcle glaciaire, c'est-à-dire un gigantesque lahar. Ce déferlement d'eau, de glace et de boue représente un risque majeur car une population relativement dense vit à ses pieds.

 

Islande.jpg
Eyjafjöll et Katla sont situés en dehors de la divergence des plaques
(document "Pour la Science - juin 2010)

 

Comment les cendres volcaniques menacent les aéronefs

 

Parce que les nuages de cendres sont secs, ils sont invisibles sur les radars météorologiques.

 

Pour comprendre le risque, rappelons-nous de la mésaventure d'un Boeing 747 de la British Airways survenue le 24 juin 1982. Le Boeing 747 avait décollé de Londres pour Auckland (Nouvelle-Zélande). L'équipage ignorait que le volcan Mount Galunggung à l'ouest de Java (Indonésie) était entré en éruption et crachait des cendres à son altitude de vol.

 

Quelque part au sud de Java à 1 h 40, heure locale, l'équipage remarqua que le verre des fenêtres du poste de pilotage devenait brillant, phénomène aussitôt suivi par une lueur au niveau des moteurs et une odeur de gaz sulfureux envahissant la cabine. En quelques minutes, les quatre moteurs furent coupés et le jumbo-jet dut parcourir en planeur 11 kilomètres au-dessus de l'océan. À l'altitude de 4 kilomètres, cependant, certains des moteurs purent être remis en marche et l'avion atterrit en toute sécurité à Jakarta.

 

Comme nous l'avons dit plus haut, les cendres volcaniques ou téphras se composent de particules de roche pulvérisée vitreuse de diamètre inférieur à 2 millimètres et extrêmement corrosives. Quand un avion vole en altitude à sa vitesse de croisière, les fenêtres du poste de pilotage subissent un jet de téphras, obscurcissant la vue des pilotes. Les moteurs aspirent la poussière qui fond dans la chambre de combustion et ce magma se dépose sur les aubes de turbine bloquant ainsi le flux d'air du moteur, s'immisçant également dans les tubulures. Heureusement quand le magma se refroidit et se solidifie alors que l'avion plonge en planeur, il arrive qu'il se détache et permette un redémarrage du moteur.

En outre, le nuage chargé de cendres est appauvri en oxygène. Si un aéronef le traverse, la combustion du kérosène s'en trouve gênée et le rendement des réacteurs minoré pouvant aller jusqu'à l'extinction.

 

En ce qui concerne le Eyjafjöll, tant que le risque lié au nuage de cendres volcaniques a subsisté, les transports aériens de l'Europe du Nord, y compris la moitié nord de la France et la Suisse ont été suspendus.

 

Remarque (11/06/2011) : une décision justifiée par des études en laboratoire

 

En fait, la décision de bloquer au sol les avions pendant l'éruption du volcan islandais était la bonne, affirme le département de chimie de l'université de Copenhague (Danemark). Les cendres émises pouvaient bel et bien perturber les moteurs, selon les essais réalisés en laboratoire.

Une étude publiée dans les Pnas a montré que les cendres de l'Eyjafjoll étaient abrasives et le sont restées durant plusieurs semaines. D'une taille variant d'une dizaine de nanomètres au millimètre près du volcan, les particules, associées à de la vapeur d'eau, étaient composées d'andésite, de cristaux de plagioclases (silicates), de pyroxènes et d'olivine. Les risques pour les avions étaient multiples : abrasion du pare-brise, vitrification sur certaines parties des réacteurs.

Les chercheurs annoncent par ailleurs dans les Pnas avoir mis au point une méthode pour déterminer en 24 heures la dangerosité des cendres.

 

Remarque (24/05/2011) : Peut-on protéger les avions des cendres volcaniques ?

 

L'éruption de l'Eyjafjöll, en avril 2010, a projeté dans l'atmosphère une grande quantité de cendres, ce qui a paralysé le trafic aérien en Europe. Un peu plus d'un an après, un autre volcan sous-glaciaire islandais, le Grimsvötn, est entré en éruption projetant également un panache de cendres qui a atteint 20.000 mètres de hauteur le samedi 21 mai 2011, premier jour de l'éruption.

 

En quelques, jour, le panache de cendres dégagé par le Grimsvötn s'est réduit aux alentours de 2000 mètres de hauteur et l'éruption pourrait prendre fin avant la fin du mois de mai.

 

Le trafic aérien a été perturbé en Islande et dans les Îles britanniques.

Le risque couru par les aéronefs est dû au fait que les cendres sont susceptibles de fondre dans les réacteurs des avions, et dégradent les céramiques isolantes.

 

La céramique utilisée en aéronautique est composée d'un mélange d'oxydes de zirconium (ZrO2) et d'yttrium (Y2O3) ; elle isole le réacteur des pièces situées à proximité. Sa structure poreuse la rend flexible : elle peut se déformer sans se rompre lors des changements de température.

 

Nitin Padture, de l'Université de l'Ohio et ses collègues américains et russes ont étudié son comportement quand elle est chauffée à 1200 °C en présence des cendres, riches en silice, prélevées sur l'Eyjafjöll. Ils ont montré que les cendres fondent et constituent une phase vitreuse peu visqueuse qui pénètre dans les pores. En refroidissant, la silice durcit, diminuant la flexibilité de la céramique, qui risque de se détacher du réacteur. Les chercheurs ont mis au point une nouvelle céramique d'oxyde de zirconium et de gadolinium (Gd2Zr2O7), imperméable aux cendres fondues dès que son épaisseur est supérieure à dix micromètres. À haute température, cette céramique réagit partiellement avec les cendres et forme de petits cristaux qui colmatent l'entrée des pores. Ainsi, la silice vitreuse ne pénètre plus profondément dans la céramique, et le matériau conserve à peu près sa structure et ses propriétés isolantes.

 

Ces nouveaux matériaux doivent encore subir des tests pour que l'on sache s'ils conservent leurs propriétés après plusieurs cycles d'élévation de la température. Les avions devraient pouvoir alors voler à travers des nuages de cendres volcaniques.

 

Source : J. Drexler et al., Advanced Materials, en ligne, 8 avril 2011

 

Le système AVOID (6 novembre 2013)

 

Grâce à ce système mis au point par des chercheurs norvégiens, les avions ne seront plus bloqués par les volcans. Pour éviter que les avions restent cloués au sol par les panaches de cendres, des chercheurs norvégiens associés à une compagnie aérienne ont développé le système AVOID. Ce système va permettre aux avions de déceler ces infimes particules à une centaine de kilomètres de distance. Assez loin pour pouvoir adapter leur plan de vol ! Son efficacité a été testée avec succès en octobre 2013. Ce dispositif exploite la loi de Planck, qui lie la température d'un corps à son rayonnement : un nuage de cendres étant plus chaud qu'un cumulonimbus, par exemple, il n'émet pas les mêmes ondes, ce qui permet de le repérer. Captées à l'aide de deux caméras thermiques à infrarouge fixées sur l'avion, les données sont transmises en temps réel à l'ordinateur de bord ainsi qu'au centre de contrôle aérien. Des cartes de dispersion des cendres sont ainsi établies. Encore au stade de développement, le système intéresse déjà de nombreuses compagnies aériennes. Easy Jet envisage de l'intégrer dès 2015 sur une dizaine d'appareils.

 

Surveillance des panaches de cendres volcaniques (octobre 2011)

 

L'éruption de l'Eyjafjoll a entraîné une longue et très coûteuse fermeture de l'espace aérien. Pour éviter que cette situation de crise ne se reproduise, experts, chercheurs et météorologues des VAAC (Volcanic Ashes Advisory Centers) unissent désormais davantage leurs efforts et leurs moyens pour prédire l'avancée des panaches de cendres. En combinant étude directe et détection par satellites, photomètres et lidars (télédétection par laser), parfois transformés pour l'occasion, ils cumulent des informations sur la composition, l'altitude ou la densité des cendres et obtiennent en quelques heures des cartes prévisionnelles fiables du trajet de ces nuages afin de renseigner au plus vite les compagnies aériennes. Un travail qui reste cependant difficile compte tenu des incertitudes naturelles (caprices du volcan, conditions météorologiques, etc.) mais aussi en raison de l'absence d'un réseau d'observation européen spécifique.

 

1. Par une étude directe

 

Échantillonnage des cendres au sol ou dans le nuage, par avion (ATR 42 M55 Geophysica) pour connaître leurs propriétés microphysiques (granulométrie, forme...) et leur composition chimique.

 

2. Au sol

 

Surveillance de l'atmosphère via des réseaux de radars, lidars, interféromètres, photomètres... Ces derniers mesurent l'intensité de la lumière qui leur parvient du Soleil, plus basse en présence de cendres, permettant d'évaluer l'épaisseur du nuage. Ces mesures sont rendues difficiles en présence de pollution.

 

3. Par satellites

 

Utilisation de radiomètres, interféromètres, lidars, etc., embarqués dans des satellites d'observation de l'atmosphère (Parasol, Calipso, Météosat, Envisat, Metop, Terra, Aqua...) pour déterminer la surface, l'altitude, l'épaisseur du nuage et certaines de ses caractéristiques.

 

4. Par avion

 

16 avril 2010 : le CEA à Saclay détecte des cendres de l'Eyjafjoll au nord de la France puis à 6 km au-dessus de Paris. Afin de pouvoir renseigner les compagnies aériennes, il embarque un lidar dans un avion Falcon 20 de l'unité Satire (CNRS, Cnes, Météo-France). Cet appareil, aussi utilisé au sol ou par satellite, émet un faisceau laser vers l'atmosphère et analyse la lumière qui lui revient. En dépolarisant cette lumière, les cendres signent leur présence dans l'atmophère.

 

Source : Marion Sabourdy, Sciences et Avenir, n° 776, octobre 2011, p. 16-17.

 

Destin des cendres

 

 Que vont devenir ces cendres ? Soumises aux pluies et aux vents, elles ont rejoint les couches basses de la troposphère et se sont fondus dans la masse des polluants urbains et industriels.

 

À la suite de l'éruption de l'Eyjafjöll, un groupe de travail international dirigé par l'Autorité de l'Aviation Civile (CAA) du Royaume-Uni a défini trois zones pour le trafic aérien.

- Zone 1, moins de 0,2 mg de cendres par m3 d'aire : aucune restriction de vol.

- Zone 2, concentration comprise entre 0,2 et 2 mg par m3 d'air : les vols sont possibles, mais les contrôles de maintenance et d'inspection des appareils sont renforcés.

- Zone 3 : concentration supérieure à 2 m par m3 d'air : les vols sont interdits.

Selon la météo, des vols de durée limitée peuvent cependant être autorisés jusqu'à 4 mg par la CAA.

 

Comment la vie peut reprendre le dessus

 

Ce problème rejoint celui des biotopes soumis aux incendies. Après incendie ou éruption volcanique, la biodiversité se recompose grâce aux espèces opportunistes. Sur la terre carbonisée, les quelques espèces survivantes, mais surtout celles qui vivaient en lisière profitent de la situation pour recoloniser le milieu. Et cela rapidement. L'ampleur et la rapidité de la recolonisation dépendent de l'intensité de la brûlure, du lieu et du moment de la catastrophe, ainsi que des espèces présentes sur et autour du site anéanti.

 

Sur le lieu-même de la catastrophe, la nature transforme un sol devenu invivable en un support capable à nouveau d'accueillir la vie en quelques années et la recolonisation s'enclenche avec la dispersion de nouvelles espèces venues de l'extérieur. Ce processus dépend tout de même de certaines conditions. Le lieu de la zone à recoloniser et sa distance par rapport aux différentes populations sources susceptibles de le conquérir sont deux éléments primordiaux. Plus il est aisé et rapide de coloniser un territoire, plus le nombre d'espèces qui l'envahiront sera important.

 

Un bel exemple de cette recolonisation est donné par l'île Surtsey apparue au sud-ouest de l'Islande entre 1963 et 1967.

 

Sur cette île volcanique sortie stérile de l'océan, entre 1963 et 1967, seules les graines capables d'être transportées par les flots ou par les vents parvinrent à s'installer. Puis des oiseaux nichèrent sur l'île et apportèrent avec eux quantités de nouvelles espèces végétales mais aussi animales. Quarante-cinq ans plus tard, on compte 91 espèces d'oiseaux, 354 espèces d'invertébrés et 69 espèces de plantes !

 

C'est probablement au mont Saint-Helens, dans le Nord-Ouest des États-Unis, que ces processus ont été les plus étudiés. Aujourd'hui, une forêt de conifères entoure les pieds de ce jeune volcan et sur ses flancs s'étalent des prairies vertes. Pourtant, en mai 1980, l'éruption du volcan transforma plus de 500 km2 de vie exubérante en un désert de cendre et de désolation.

 

"Au mont Saint-Helens, la recolonisation de la vie a surpris tout le monde par sa vitesse et par ses mécanismes", confie Virginia Dale, qui fait partie des premiers écologues américains à s'être rendus sur place, puis à effectuer un suivi de la nature autour du volcan.

Un des résultats les plus étonnants de ce suivi a révélé l'importance des espèces survivantes. De fait, malgré les coulées de lave et les tonnes de poussières ardentes, des poches de vie ont survécu dans certains endroits, autorisant la mise en route de la première phase de la recolonisation via l'expansion d'espèces existantes. Un phénomène que l'on retrouve dans la plupart des incendies et des éruptions volcaniques, mais de façon plus ou moins marquée.

 

Chez les végétaux, les graines les plus légères et les spores de fougères ou de mousses débarquées par le vent représentaient les premiers colons, Les graines ont aussi été transportées par les animaux. C'est ainsi qu'en l'espace de neuf ans, la végétation autour de ce jeune volcan recouvrait déjà environ 10 % des territoires qu'elle occupait autrefois. Aujourd'hui, les chercheurs estiment qu'elle recouvre environ 80 % des zones, avec toutefois de grandes disparités selon les endroits.

 

Pour le mont Saint-Helens, on peut dire que la nature établie autour du volcan a eu de la chance ce 18 mai 1980 : il restait une couverture neigeuse suffisamment importante pour protéger quelques espèces des éjections incandescentes. Et ces endroits furent ensuite de véritables îlots de végétation d'où la nature puisa la force de reconquérir le terrain perdu.

 

Par ailleurs, certains animaux migrateurs n'étaient pas sur les lieux au moment de l'éruption, comme les saumons dont certains sont revenus l'été suivant. Tandis que d'autres animaux étaient encore bien enfouis dans leur terrier, notamment les rongeurs. Sur les 32 espèces de petits mammifères connus pour vivre autour du volcan, 14 ont ainsi survécu. De même que plusieurs végétaux dont la germination n'avait pas encore eu lieu, comme les lupins. Ces pionnières végétales ont joué un rôle déterminant car elles ont l'avantage de fixer et retenir l'azote, ce qui permet de fertiliser les sols. Et donc de faciliter l'installation d'autres plantes.

 

De fait, l'état du sol à la suite d'une catastrophe de ce type constitue un des freins majeurs au retour des végétaux. Après avoir grillé à plus de 300 °C, les cellules des organismes du sol et des végétaux sont détruites, les nutriments brûlés. Et la terre devient stérile. Elle ne retrouvera sa capacité d'accueil que grâce aux apports des zones voisines moins touchées. Les plantes survivantes jouent ici un rôle clé en fournissant une matière organique capable d'accueillir d'autres espèces.

 

Toutefois, les plantes survivantes ne sont pas les seules à restaurer la fertilité des terres brûlées. Les nuages de cendre alimentent aussi le sol en minéraux, ainsi que les pluies, les fientes d'oiseaux ou encore le bois mort. Enfin, les "pluies d'insectes" ont également un rôle important, dans des proportions plus ou moins grandes selon la richesse et la distance de la source d'insectes. Durant l'été, de nombreux juvéniles d'insectes et d'araignées se disséminent par la voie des airs. C'est l'essaimage aérien. Sur chaque hectare autour du volcan, environ 90 kg d'insectes sont ainsi déposés durant les quatre mois d'été, d'après les estimations des scientifiques ! Or en plus d'apporter la vie et d'amorcer une chaîne alimentaire, ces insectes dont beaucoup meurent rapidement, alimentent également le sol en matière organique (matière carbonée issue des êtres vivants et composée essentiellement de carbone et d'eau mais aussi d'oxygène, d'hydrogène, d'azote, de phosphore, etc.).

 

Quelques photos magnifiques sur l'éruption

 

Voir également : les volcans d'Islande (Vu du Ciel France 3)

 

Ajout du 23/08/2014

 

Été 2014 : le Bardarbunga, situé sous le plus grand glacier d'Islande et dont l'altitude dépasse 2 000 mètres, est entré en activité le samedi 16 août. voir l'article : un volcan islandais menaçant

 

Sources bibliographiques :

 

Observatoire de Physique du Globe de Clermont-Ferrand

Detay M. (2010) - L'Eyjafjöll, radiographie d'un volcan qui a du panache. Pour la Science, n° 392 - juin 2010, 70-76.

Incendies : la biodiversité se recompose avec opportunisme. Science & Vie, n° 1114, juillet 2010. pp 58-61.

 

22/06/2010

Le Kawa Ijen, un volcan de Java (Indonésie)

Le Kawa Ijen est un volcan dont le cratère est occupé par un lac acide. Il se caractérise par une exploitation à dos d'homme d'une solfatare qui produit du soufre.

Lire la suite

Séismes

séisme.jpgSéismes 2010

 

par André Guyard

 

Le début de l'année 2010 a été marqué par une série de tremblements de terre qui ont affecté Haïti en janvier et le Chili en février.

 

Haïti

Haiti_plaque caraibe-1.jpg
Conflit des plaques tectoniques dans la région caraïbe

 

L'île d'Hispaniola (que se partagent Haïti et la République dominicaine) se trouve dans une zone sismiquement active, entre deux plaques tectoniques : la plaque nord-américaine au nord et la plaque caraïbe au sud. Dans cette zone, les failles sont des décrochements sénestres et des failles de compression (failles inverses) ou chevauchements.

 

Au départ, on a cru que le séisme avait été provoqué par la rupture d'une faille, orientée ouest-est, sur une longueur de cinquante à cent kilomètres. Il s'agit de la faille d'Enriquillo, qui est un décrochement sénestre qui traverse l'île d'Ouest en Est et passe à 5 km au sud de la capitale Port-au-Prince et qui autorise un mouvement horizontal de 7 mm/an.

 

Selon Éric Calais, de l'université Purdue (États-Unis), le séisme a été occasionné par une faille alors inconnue. L'observation des récifs coralliens émergés près de l'épicentre ainsi que les données récoltées par satellites radar et CPS ont montré que ce séisme avait causé des déformations de la surface terrestre incompatibles avec le comportement de la faille d'Enriquillo. En utilisant un modèle informatique pour simuler ces déformations, le chercheur a montré qu'elles ne pouvaient s'expliquer que par l'existence d'une faille secondaire jusqu'alors non identifiée, et baptisée faille de Léogâne. Et le géologue de prévenir que la faille d'Enriquillo menace donc toujours Haïti puisqu'elle n'a pas libéré l'énergie accumulée.

 

Haiti_faille_décrochante-1.jpg
La faille décrochante d'Enriquillo


Ce tremblement de terre est un séisme crustal dont le foyer serait à une profondeur relativement faible de 10 km (d'où la dénomination de séisme crustal). Sa magnitude est de 7,0 à 7,3. Il est survenu le 12 janvier 2010 à 16 heures 53 minutes, heure locale. Son épicentre (18° 27′ 25″ Nord - 72° 31′ 59″ Ouest) est situé approximativement à 25 km de Port-au-Prince, la capitale d'Haïti. Une douzaine de secousses secondaires de magnitude s'étalant entre 5,0 et 5,9 ont été enregistrées dans les heures qui ont suivi dont le deuxième d'une magnitude de 6,1 est survenu le 20 janvier 2010 à 6 heures 3 minutes, heure locale avait un hypocentre situé approximativement à 59 km à l'ouest de Port-au-Prince, et à moins de 10 kilomètres sous la surface. L'Institut géologique américain a annoncé le 24 janvier avoir enregistré 52 répliques d'une magnitude supérieure ou égale à 4,5.

 

Haiti_épicentre-1.jpg
L'épicentre se situait à 25 km de Port-au-Prince

 

Selon le CNRS (19 janvier 2010), le glissement cosismique de 1 à 2 m se serait produit sur 70 km de long.

 

Le premier séisme a causé de nombreuses victimes, : 230 000 morts, 300 000 blessés et 1,2 million de sans-abris. 211 rescapés ont été extraits des décombres par les équipes de secouristes venues du monde entier.

 

Haiti_intensité_séisme-1.jpg

Carte des intensités du séisme, estimées, selon l'échelle de Mercalli


Port-au-Prince1-1.jpg
1ère image satellite après le séisme
© SERTIT - CNES - International Charter

La carte ci-dessous montre en rouge, les zones dont au moins 45 pour cent des structures ont été endommagées. En orange, celles où les dégâts sont plus sporadiques (entre 11 et 45 pour cent). En jaune, celles où peu de dommages sont visibles.

Port-au-Prince2-1.jpg
Première carte des dégâts à Port-au-Prince
© CNES, JAXA, GeoEye, SERTIT

Comment les satellites aident-ils à évaluer les dégâts causés par un séisme?

 

Deux heures à peine après le séisme survenu en Haïti le 12 janvier, la Sécurité civile française, première à réagir, a activé la charte internationale "Espace et Catastrophes majeures". Cet accord, signé il y a dix ans, prévoit que les 12 principales agences spatiales s'engagent à mettre gratuitement en commun les données acquises par leurs satellites d'observation juste après une catastrophe naturelle majeure.

 

Objectif : éditer des cartes de terrain les plus actualisées possibles afin d'aider les secours sur place. Le Gnes (Centre national d'études spatiales), à Toulouse, a dirigé les opérations financées par une initiative européenne, le GMES (Global Monitoring for Environnement and Security).

 

Un peu plus de vingt-quatre heures après le séisme, une première carte des dégâts était envoyée sur place. D'autres ont suivi. « C'est la première fois que nous parvenons à exploiter aussi efficacement les données satellitaires car les conditions météo très favorables ont permis de faire des images sans nuages », précise Catherine Proy, du Cnes.

 

La charte avait déjà été mise en œuvre lors du tremblement de terre au Sichuan (Chine) en mai 2008, mais la couverture nuageuse n'avait pas permis d'utiliser les images. Autre point fort en Haïti : des satellites chinois, sud-coréen et indien - pays récemment signataires de la charte - ont participé à l'opération, ainsi que deux satellites commerciaux (GeoEye et QuikBird).

 

C'est ainsi que dix satellites ont participé à l'opération. En orbite basse (600 à 800 km d'altitude). ils font le tour de la Terre en quelques heures. Il a fallu attendre que chacun d'entre eux survole Haïti après le séisme pour mettre en commun les données. Ci-dessous, un tableau des différents satellites qui ont participé à l'élaboration des cartes de sinistres en Haïti.

 

Satellites

résolution

champ de vue

SPOT 5 (France)

2,5 m

60 km x 60 km

WORLD VIEW (États-Unis)

50 cm

60 km x 110 km

GEOEYE (États-Unis)

40 cm à 1,3 m

15 km x 9,5 km

QUIKBIRD (États-Unis)

2,44 à 2,88 m

16,5 km x 16,5 km

CARTOSAT (Inde)

2,5 m

30 km

HJ1A (Chine)

30 m

50 km

KOMPSAT 2 (Corée du Sud)

1 m

50 km

ALOS (Japon)

2,5 m

70 km

Satellites radars : RADARSAT, TERRASAT

 

 

 

Une infographie publiée dans le numéro d'avril 2010 de Sciences et Avenir décrit la chronologie de l'élaboration de ces cartes de terrain.

 

13 janvier + 18 h 25

TOULOUSE

L'antenne, située à Toulouse, réceptionne les données des dix satellites, sous forme d'un tableau de nombres, entre 0 et 255. Chaque nombre représente la part de l'énergie réfléchie par un point de la surface du sol, très différente pour une surface lisse et un tas de gravats.

 

13 janvier + 19 h 57

STRASBOURG/MUNICH

Ces tableaux sont envoyés à deux centres de traitement : le Sertit (Service régional de traitement d'images et de télédétection) à Strasbourg et le DLR (Centre spatial allemand) à Munich. Leur tâche est de rendre exploitables ces données issues de satellites ayant des champs de vision et des résolutions différents pour en extraire des cartes. Pour ce faire, deux méthodes sont utilisées.

L'orthorectification

La première étape consiste à irriger l'effet du relief, celui de la rotondité de la Terre et d'une éventuelle prise de vue oblique du satellite afin d'élaborer une carte en 2D.

Le géoréférencement

La seconde étape, délicate, consiste à mettre toutes les cartes « orthorectifiées » à la même échelle puis à les caler sur un système de coordonnées géographiques (longitude et latitude), de manière à pouvoir superposer cette image satellitaire au modèle numérique de terrain (MNT) élaboré par l'IGN (Institut géographique national). C'est ainsi que l'on appelle une représentation numérique du relief d'une région. Cette superposition permet d'inclure le relief dans les cartes satellitaires.

 

14 janvier + 25 h 52

Les extractions thématiques

La carte obtenue après orthorectification et géoréférencement est comparée à la même image réalisée par des méthodes similaires avant le séisme et d'établir une carte des dégâts, définir les zones de rassemblement des populations sinistrées, les zones de pollution et les points d'eau de surface accessibles.

L'étape finale consiste à envoyer les cartes vers les zones sinistrées par les moyens de communication encore disponibles.

 

Sources pour Haïti :

 

http://fr.wikipedia.org/wiki/Tremblement_de_terre_d%27Ha%...

 

Azar Khalatbari, Chili : deux régions sous surveillance Sciences et Avenir avril 2010 n° 758 p. 18-19.

 

Le Chili

 

Un puissant séisme de magnitude 8,8 , l'un des plus violents des cent dernières années, est survenu samedi 27 février au large du Chili et plus de 20 répliques ont été enregistrées. La dernière, de magnitude 6,1, a eu lieu vers 14 h heure française. La plus puissante, de magnitude 6,9, a été enregistrée au large des côtes chiliennes à 8 h 01 GMT, soit environ une heure et demie après la première secousse. La secousse a été ressentie jusqu'à Santiago, la capitale, qui se trouve pourtant à quelque 400 km de l'épicentre, et en Argentine. Une vague de tsunami  de 2,34 mètres s'est ensuite abattue samedi matin sur la ville côtière chilienne de Talcahuano. Et des vagues de tsunami  traversaient samedi l'ensemble de l'océan Pacifique à la suite de ce séisme et le phénomène devait s'achever au Japon avec des vagues de 30 cm, selon un responsable de la Météo nationale américaine.

 

Le Chili s'organisait lundi après avoir découvert l'ampleur des dégâts provoqués sur ses côtes par ce tsunami qui a détruit des villes balnéaires entières après le séisme, dont le bilan atteignait au moins 711 morts depuis samedi.

 

Le sud du pays est le plus touché, offrant un spectacle de désolation sur le littoral, où des maisons ont été broyées, des bateaux projetés à l'intérieur des terres.

 

À l'heure où le Chili se relève de ce séisme, les experts se tournent vers deux "lacunes sismiques" menaçantes : il s'agit de segments de faille n'ayant pas rompu depuis longtemps et qui ont connu des tremblements de terre meurtriers dans le passé. D'abord, la région d'Arica (voir la carte ci-dessous), où le dernier séisme date de 1877. "Mais je suis aussi très inquiet pour celle de La Serena, déclare Raùl Madariaga, de l'Ecole normale supérieure à Paris. Cette région a bien connu des séismes, mais ils se sont produits hors de la zone de subduction et n'ont pas pu libérer les contraintes accumulées." La sismicité du Chili est due à la zone de subduction entre la plaque océanique Nazca et le continent sud-américain : la première s'enfonce d'environ 6,5 cm/an sous le second. La plaque sud-américaine doit absorber la déformation accumulée, ce qui provoque des séismes. Plus ceux-ci sont espacés, plus la probabilité d'une rupture violente est forte. Celui du 27 février, qui a déplacé la ville de Concepcion de 3 mètres, "était attendu depuis longtemps, explique Christophe Vigny, du même laboratoire, car le dernier séisme survenu dans la lacune de Concepcion, décrit par Darwin, remontait à 1835."

 

chili1-1.jpg

Conflit entre la plaque Nazca et la plaque sud-américaine

(infographie : laboratoire de géologie -ENS/CNRS à partir des données USGS)


Sources pour le Chili :

 

Azar Khalatbari, Chili : deux régions sous surveillance Sciences et Avenir avril 2010 n° 758 p. 22.

 

Peut-on prévoir les séismes ?

 

Existe-t-il des signes avant-coureurs annonçant l'imminence d'un séisme ?

 

Georges Charpak, prix Nobel de physique (1992) s'est intéressé au radon, ce gaz radioactif produit par la désintégration de l'uranium. Avec d'autres spécialistes, Charpak tente de mettre au point un détecteur de radon qui s'échappe en infime quantité des fissures du sol peu avant un séisme. D'après Charpak, il serait possible d'équiper ces micro-failles de centaines de détecteurs pour prédire l'imminence d'un séisme. Charpak a présenté un prototype de détecteur dans la revue Physicsworld qui identifie les particules alpha et les rayons gamma avec une limite de détection de 420 Bq/m3 , un becquerel (Bq) équivalant à une désintégration par seconde. L'appareil d'un faible coût, pourrait être testé par le CEA (Commissariat à l'Energie Atomique) dans son laboratoire souterrain du Beaufortain (Savoie) à proximité de la retenue de Roselend, dont la mise en eau saisonnière provoque des contraintes mécaniques aboutissant à des émissions de radon.

 

Récemment, Shih-Chieh Hsu de Taïwan a mis en évidence une concentration multipliée par 10 de dioxyde de soufre dans l'atmosphère quelques heures avant deux séismes. Ce SO2 serait libéré par des failles.

 

On trouvera dans la revue Pour la Science de janvier 2012, pp 62-67, l'annonce de la mise au point par les géophysiciens américains d'un système d'alerte rapide capable d'avertir plusieurs dizaines de secondes à plusieurs minutes à l'avance qu'une violente secousse va se produire.

 

Quand la terre gronde

 

Un guide pédagogique gratuit mis à disposition des enseignants du 1er degré pour sensibiliser leurs élèves aux risques naturels du monde.

 

Quand la terre gronde

 

 « Quand la terre gronde » a été développé par la Fondation La Main à la Pâte, en partenariat avec la CASDEN, le Ministère de l’Education nationale, l’Agence spatiale européenne, Universcience et l’Association Prévention 2000.

Ce projet a été réalisé avec l’appui d’enseignants et de scientifiques pour disposer d’un ouvrage simple, pratique et permettre aux enfants d’apprendre à vivre avec le risque de la façon la plus responsable possible. Conforme aux programmes scolaires, il s’inscrit pleinement dans le cadre de l’éducation au développement durable.

Cet ouvrage s’adresse aux enseignants ayant une connaissance scientifique ou non sur le sujet. Ce guide propose une progression complète, clé en main et modulable, composée de 4 séances indépendantes (les volcans, les séismes, les tsunamis et ma commune face aux risques), avec des éclairages scientifiques et pédagogiques, des fiches documentaires et des outils d’évaluation.

Pour disposer gratuitement de cet outil, les enseignants de l’école primaire sont invités à effectuer une demande sur le site* : www.quand-la-terre-gronde.fr

*Dans la limite des stocks disponibles.

 

 

Sismologie dans la région de Thise (Doubs)

Sismologie dans la région de Thise (Doubs)

 

par André Guyard

(article modifié le 2 mars 2013)

 

L'activité sismique particulièrement intense au cours des deux dernières années (2010 et 2011) nous interpelle. Quels sont les séismes qui ont secoué la région bisontine et particulièrement la commune de Thise au cours des siècles derniers ?

 

L'échelle de Richter indique la magnitude, c'est-à-dire l'intensité du séisme. La magnitude est l'énergie libérée par un séisme, indépendamment des dégâts provoqués. Elle est définie par une échelle logarithmique, où chaque unité ajoutée correspond à une multiplication par 32 de l'énergie libérée. Ainsi, un séisme de magnitude 9 libère, non pas 3 fois plus, mais 1 milliard 74 millions de fois plus d'énergie qu'un séisme de magnitude 3.

 

séisme,franche-comté,thise,besançon,bâle,fessenheim

Carte du risque sismique en Franche-Comté © Géoportail)

 (Cliquez sur la carte pour zoomer)

 

Le tableau ci-dessous répertorie l'ensemble des séismes qui ont affecté notre région au cours des derniers siècles.

Nous reprendrons plus en détail, les séismes dont l'épicentre se trouvait à proximité de notre commune.

 

Tableau des séismes ayant affecté

le Nord-Est de la France

et les régions voisines

 

Surlignés en jaune : séismes ayant affecté la Franche-Comté.

Surlignés en rouge : séismes d'intensité (= magnitude) supérieure ou égale à 7 ayant affecté les contrées voisines.

 

Date

Heu-

re

Choc

Localisation

épicentrale

Région

ou

pays de l'épicentre

Inten-

sité

épi-

centrale

12/11/

2005

19h

31

 

JURA SUISSE

(N-E. AARAU)

SUISSE

5

8/09/

2005

11h

27

 

MASSIF DU MONT-BLANC (VALLORCINE)

ALPES SAVO-

YARDES

5

12/05/

2005

1h

38

 

JURA SUISSE

(N.E SOLOTHURN)

SUISSE

4

5/12/

2004

1h

52

 

BADEN-WURTEMBERG (WALDKIRCH)

ALLEMAGNE

6

28/06/

2004

23h

42

 

JURA SUISSE

(N-E. AARAU)

SUISSE

 

21/06/

2004

23h

10

 

JURA SUISSE(BALE)

SUISSE

5

23/02/

2004

17h

31

 

JURA

(S. BAUME-LES-DAMES)

FRANCHE-

COMTE

5,5

22/02/

2003

20h

41

 

PAYS FORESTIER SOUS-VOSGIEN (RAMBERVILLERS)

VOSGES

6,5

30/04/

1989

3h

38

 

AVANT-PAYS JURASSIEN (FROIDEVAUX)

FRANCHE-

COMTE

4,5

29/12/

1984

11h

03

R

HAUTES-VOSGES (ELOYES-REMIREMONT)

VOSGES

 

29/12/

1984

11h

02

 

HAUTES-VOSGES (ELOYES-REMIREMONT)

VOSGES

6

13/10/

1984

21h

23

 

AVANT-PAYS JURASSIEN (BESANCON)

FRANCHE-

COMTE

4

5/09/

1984

5h

16

 

ZURICH

SUISSE

6

21/06/

1983

15h

03

 

JURA (ORNANS)

FRANCHE-

COMTE

4,5

5/02/

1983

16h

19

R

AVANT-PAYS JURASSIEN (RANDEVILLERS)

FRANCHE-

COMTE

 

3/02/

1983

2h

48

 

AVANT-PAYS JURASSIEN (RANDEVILLERS)

FRANCHE-

COMTE

4

18/07/

1980

23h

03

E

PLAINE DE

HAUTE-ALSACE (HABSHEIM)

ALSACE

 

16/07/

1980

15h

50

E

PLAINE DE

HAUTE-ALSACE (HABSHEIM)

ALSACE

4,5

15/07/

1980

12h

17

 

PLAINE DE

HAUTE-ALSACE (HABSHEIM)

ALSACE

6,5

3/07/

1979

21h

13

 

PLATEAU SUISSE (MORAT)

SUISSE

 

3/09/

1978

7h

08

 

JURA SOUABE (ONSMETTINGEN)

ALLEMAGNE

7,5

8/01/

1975

9h

12

 

PLATEAUX JURASSIENS (SALINS-LES-BAINS)

FRANCHE-

COMTE

 

8/03/

1968

4h

01

 

PLAINE DE HAUTE-BOURGOGNE (PONTAILLER/SAONE)

BOURGOGNE

4,5

16/07/

1967

14h

04

 

PLAINE DE HAUTE-BOURGOGNE (AUXONNE)

BOURGOGNE

5

10/07/

1966

3h

45

 

AVANT-PAYS JURASSIEN (MONTAGNEY)

FRANCHE-

COMTE

 

2/07/

1966

6h

15

 

PLATEAU DE HAUTE-SAONE (FAUCOGNEY ?)

FRANCHE-

COMTE

4

14/03/

1964

2h

37

 

UNTERWALD (SARNEN)

SUISSE

7

25/04/

1962

4h

44

 

VERCORS (CORRENCON-EN-VERCORS)

DAUPHINE

7,5

28/04/

1961

20h

48

 

FORET NOIRE (LORRACH)

ALLEMAGNE

5,5

23/03/

1960

23h

08

 

VALAIS (BRIG)

SUISSE

7

23/11/

1955

6h39

E

AVANT-PAYS JURASSIEN (MONTARLOT-LES-RIOZ)

FRANCHE-COMTE

6

21/11/

1955

17h45

 

AVANT-PAYS JURASSIEN (CUSSEY)

FRANCHE-COMTE

 

3/11/

1955

14h27

E

AVANT-PAYS JURASSIEN (MONTARLOT-LES-RIOZ)

FRANCHE-COMTE

6

28/10/

1955

7h19

E

AVANT-PAYS JURASSIEN (MONTARLOT-LES-RIOZ)

FRANCHE-COMTE

 

29/07/

1954

4 h 42

 

VALAIS (MONTANA)

SUISSE

6,5

19/05/

1954

9 h 34

 

VALAIS (N-W. SION)

SUISSE

7

30/05/ 1946

4 h 41

R

VALAIS (CHALAIS)

SUISSE

7

26/01/

1946

3 h 15

R

VALAIS (CHALAIS)

SUISSE

 

25/01/

1946

21 h 39 min

R

VALAIS (CHALAIS)

SUISSE

 

25/01/

1946

17 h 32

 

VALAIS (CHALAIS)

SUISSE

7,5

31/05/

1936

5 h 39

 

AVANT-PAYS JURASSIEN (SELONCOURT)

FRANCHE-COMTE

4

30/12/  1935

3 h 36

 

VALLEE DU RHIN (OFFENBURG)

ALLEMAGNE

7

30/12/

1935

3 h 07

P

VALLEE DU RHIN (OFFENBURG)

ALLEMAGNE

 

27/06/

1935

17 h 19

 

JURA SOUABE (KAPPEL)

ALLEMAGNE

7,5

8/02/

1933

7 h 07

 

VALLEE DU RHIN (RASTATT)

ALLEMAGNE

7

11/01/

1931

23 h 50

E

AVANT-PAYS JURASSIEN (HERIMONCOURT)

FRANCHE-COMTE

 

11/01/

1931

20 h 20

E

AVANT-PAYS JURASSIEN (HERIMONCOURT)

FRANCHE-COMTE

 

11/01/  1931

19 h

E

AVANT-PAYS JURASSIEN (HERIMONCOURT)

FRANCHE-COMTE

 

11/01/

1931

16 h 45

E

AVANT-PAYS JURASSIEN (HERIMONCOURT)

FRANCHE-COMTE

4

10/01/

1931

1 h

E

AVANT-PAYS JURASSIEN (HERIMONCOURT)

FRANCHE-COMTE

 

23/12/

1930

2 h

E

AVANT-PAYS JURASSIEN (HERIMONCOURT)

FRANCHE-COMTE

 

20/12/

1930

17 h 30

 

AVANT-PAYS JURASSIEN (HERIMONCOURT)

FRANCHE-COMTE

 

28/06/

1926

22 h

 

VALLEE DU RHIN (KAISERSTUHL)

ALLEMAGNE

7

8/01/

1925

2 h 44

 

JURA SUISSE (ORBE-LIGNEROLLE)

SUISSE

6,5

19/11/ 1924

17 h 55

 

JURA SUISSE (ORBE)

SUISSE

 

1/03/1916

20 h 53

 

AVANT-PAYS JURASSIEN (DOLE)

FRANCHE-COMTE

5

15/12/

1912

22 h 15

 

AVANT-PAYS JURASSIEN (HERIMONCOURT)

FRANCHE-COMTE

 

28/10/  1911

22 h 17

 

AVANT-PAYS JURASSIEN (ECHENOZ-LE-SEC ?)

FRANCHE-COMTE

4

16/11/

1911

21 h 26

 

JURA SOUABE (EBINGEN)

ALLEMAGNE

8,5

26/05/

1910

7 h 12

 

JURA SUISSE (LAUFEN)

SUISSE

6

 29/04/

1905

 1 h 59

 

 MASSIF DU MONT-BLANC (LAC D'EMOSSON)

 SUISSE

 7,5

 6/05/

1898

 13 h 10

 

 OBERLAND (S. THUN)

 SUISSE

 6,5

 22/02/

1898

 11 h 45 min 

 

 JURA SUISSE (GRANDSON)

 SUISSE

 6,5

 28/12/

1892

 6 h

 

 JURA (MAICHE, ST-HIPPOLYTE)

 FRANCHE-COMTE

 5

 28/12/

1892

 2 h

 P

 JURA (MAICHE, ST-HIPPOLYTE)

 FRANCHE-COMTE

 

 27/12/

1892

 21 h

 P

 JURA (MAICHE, ST-HIPPOLYTE)

 FRANCHE-COMTE

 

 27/12/

1892

 13 h

 P

 JURA (MAICHE, ST-HIPPOLYTE)

 FRANCHE-COMTE

 

 25/12/

1892

 21 h 15

 P

 JURA (MAICHE, ST-HIPPOLYTE)

 FRANCHE-COMTE

 

 10/09/

1883

 4 h

 R

 JURA (SANCEY-LE-GRAND)

 FRANCHE-COMTE

 

 7/09/

1883

 23 h 30

 

 JURA (SANCEY-LE-GRAND)

 FRANCHE-COMTE

 

 22/07/

1881

 2 h 45

 

 BELLEDONNE-PELVOUX

 ALPES SAVOYARDES

 7

 8/10/

1877

 5 h 12

 

 FAUCIGNY (LA ROCHE-SUR-FORON)

 ALPES SAVOYARDES

 7

 2/04/

1876

 

 

 JURA SUISSE (NEUCHATEL-BIENNE ?)

 SUISSE

 5,5

 10/11/

1873

 19 h 30

 

 JURA (ORNANS)

 FRANCHE-COMTE

 

 14/09/

1866

 5 h 10

 

 BRENNE (AZAY-LE-FERRON)

 BERRY

 7

 23/10/

1865

 7 h 15

 

 AVANT-PAYS JURASSIEN (BESANCON)

 FRANCHE-COMTE

 

 17/04/

1862

 8 h 10

 

 PLAINE DE HAUTE-BOURGOGNE (SELONGEY)

 BOURGOGNE

 5

 17/06/

1858

 10 h

 

 TERRITOIRE DE BELFORT (BEAUCOURT)

 FRANCHE-COMTE

 4,5

 14/02/

1857

 

 

 PAYS DE MONTBELIARD

 FRANCHE-COMTE

 5

 26/07/

1855

 14 h

 R

 VALAIS (VISP)

 SUISSE

 

 26/07/

1855

 10 h

 R

 VALAIS (VISP)

 SUISSE

 8

 25/07/

1855

 12 h 50

 

 VALAIS (VISP)

 SUISSE

 9

 11/07/

1852

  

 

 TERRITOIRE DE BELFORT (BEAUCOURT)

 FRANCHE-COMTE

 

 24/08/

1851

 2 h

 Z

 OBERLAND (S-W. THUN ?)

 SUISSE

 

 16/05/

1848

 5 h

 

 PLATEAUX JURASSIENS (NOZEROY)

 FRANCHE-COMTE

 5,5

 17/08/

1846

 7 h 40

 

 PLATEAU SUISSE (YVERDON)

 SUISSE

 6,5

 6/09/

1843

 9 h 28

 

 VALLEE DU DOUBS (SOULCE)

 FRANCHE-COMTE

 

 24/01/

1837

 2 h

 Z

 VALAIS (BRIG)

 SUISSE

 7

 27/08/

1831

 0 h 5

 Z

 AVANT-PAYS JURASSIEN (BESANCON)

 FRANCHE-COMTE

 

 30/10/

1828

 7 h 20

 

 AVANT-PAYS JURASSIEN (BESANCON)

 FRANCHE-COMTE

 7

26/10/

1828

11 h 30

P

AVANT-PAYS JURASSIEN (BESANCON)

FRANCHE-COMTE

6

16/12/

1823

 

 

AVANT-PAYS JURASSIEN (BESANCON)

FRANCHE-COMTE

 

19/02/

1822

8 h 45

Z

BUGEY (BELLEY)

BRESSE ET JURA BRESSAN

7,5

11/03/

1817

21 h 25

 

MASSIF DU MONT-BLANC (CHAMONIX)

ALPES SAVOYARDES

7

29/11/

1784

22 h 10

 

SUNDGAU (ALTKIRCH ?)

ALSACE

6

15/10/

1784

12 h 03

 

LAC DU BOURGET (AIX-LES-BAINS)

ALPES SAVOYARDES

6,5

6/07/

1783

9 h 56

 

VALLEE DE L'OUCHE (BLIGNY)

BOURGOGNE

6

10/09/

1774

16 h 30

 

LAC DES 4 CANTONS (LUCERNE)

SUISSE

8

18/01/

1757

5 h 52

 

VOSGES COMTOISES (PLANCHER-LES-MINES)

FRANCHE-COMTE

6

18/02/

1756

7 h 45

 

HAUTES-FAGNES (STOLBERG)

ALLEMAGNE

8

9/12/

1755

14 h 45

 

VALAIS (BRIG)

SUISSE

8,5

26/02/

1685

 

 

JURA SUISSE (AARAU ?)

SUISSE

 

12/05/

1682

2 h 30

 

HAUTES-VOSGES (REMIREMONT)

VOSGES

8

12/12/

1672

14 h

 

JURA SUISSE (BALE ?)

SUISSE

 

24/01/

1653

23 h

 

JURA SUISSE (BALE)

SUISSE

 

21/09/

1650

3 h

 

JURA SUISSE (BALE)

SUISSE

6,5

15/06/

1630

10 h

 

JURA (PONT-DE-ROIDE ?)

FRANCHE-COMTE

 

30/05/

1621

15 h

 

JURA SUISSE (NEUCHATEL)

SUISSE

 

5/10/

1614

1 h 45

 

FORET NOIRE (S. SCHOPFHEIM ?)

ALLEMAGNE

 

18/09/

1601

1 h 45

 

LAC DES 4 CANTONS (LUCERNE)

SUISSE

8

13/11/

1592

22 h

 

AVANT-PAYS JURASSIEN (BESANCON)

FRANCHE-COMTE

 

11/03/

1584

11 h 30

 

LAC LEMAN (MONTREUX)

SUISSE

7

18/10/

1356

22 h

 

JURA SUISSE (BALE)

SUISSE

9

18/10/

1356

17 h

P

JURA SUISSE (BALE)

SUISSE

7,5

1/02/

1267

2 h

 

AVANT-PAYS JURASSIEN (BESANCON)

FRANCHE-COMTE

 

3/01/

1117

17 h

 

LOMBARDIE (VERONE)

ITALIE

 

 

Quelques explications sur la nomenclature employée dans ce tableau :

 

Nature du choc :

 

  • C : choc principal
  • R : Réplique
  • E : Secousse individualisée d'un essaim
  • P : Précurseur
  • Z : Groupe de secousses d'un essaim

 

Degrés de l'intensité épicentrale :

 

  • 4 : secousse modérée, ressentie dans et hors les habitations, tremblement des objets,
  • 5 : secousse forte, réveil des dormeurs, chutes d'objets, parfois légères fissures dans les plâtres,
  • 6 : dommages légers, parfois fissures dans les murs, frayeur de nombreuses personnes,
  • 7 : dommages prononcés, larges lézardes dans les murs de nombreuses habitations, chutes de cheminées,
  • 8 : dégâts massifs, les habitations les plus vulnérables sont détruites, presque toutes subissent des dégâts importants,
  • 9 : destructions de nombreuses constructions, quelquefois de bonne qualité, chutes de monuments et de colonnes,
  • 10 : destruction générale des constructions, même les moins vulnérables (non parasismiques),
  • 11 : catastrophe, toutes les constructions sont détruites (ponts, barrages, canalisations enterrées...).

 

Remarques : le 18 octobre 1356, deux séismes de magnitudes estimées par le site du BRGM à 9 et 7,5 ont affecté la région bâloise à proximité de la centrale nucléaire de Fessenheim (Haut-Rhin).

En ce qui concerne cette centrale de Fessenheim, la plus vieille du parc français, il s'agit du séisme de référence. Sa magnitude a été estimée à partir des registres notariaux et des annales religieuses. En fait, les avis divergent : EDF évalue sa magnitude à 6,1 ; l'Institut de radioprotection et de sûreté nucléaire (IRSN) à 6,8 ; et une étude suisse de 2009 à 7,1, ce qui est 30 fois plus violent que l'estimation de l'exploitant !

EDF a beau ajouter une marge de sûreté d'un demi-degré de magnitude au séisme historique de référence, la centrale de Fessenheim n'a pas été construite pour lui résister...

 

Le 19 février 1822, un séisme d'intensité 7,5 a affecté le Bugey où se situe la centrale nucléaire du Bugey.

 

 Les séismes ayant affecté plus spécialement notre région

Légende_intensité du séisme-1.jpg

 

En partant du plus récent au plus ancien :

Thise-séismes-1.jpg

 

1. Vallorcine : 8 septembre 2005

 

Ce séisme a produit quelques légères secousses dans la région bisontine (voir carte ci-dessous).

Thise-séismes_08-09-2005-1.jpg

Séismes-Thise_08-09-2005_carte-1.jpg

 

2. Dammartin les Templiers (23/02/2004)

 

Séisme bien ressenti dans la région bisontine (voir carte ci-dessous).

Thise-séismes__23-02-2004-1.jpg

Thise-séismes_23-02-2004_carte-1.jpg

 

3. Séisme de Rambervillers (22/02/2003)

 

Séisme faiblement ressenti dans la région bisontine (voir carte ci-dessous).

Thise-séismes_23-02-2004-1.jpg

Thise-séismes_22-02-2003-1.jpg

 

5. Séisme de Thise (30/10/1828)

 

Ce séisme d'intensité 7 a produit des dégâts dans la région bisontine et notamment à Thise.  Une douzaine de cheminées et des pans de murs entiers se sont écroulés. La tourelle jouxtant le clocher de l'église  "s'en est séparée d'un pouce environ". L'eau de la fontaine publique s'est troublée une demi-heure après la secousse.

 

Thise-séismes_30-10-1828_localités-1.jpg

Thise-séismes_30-10-1828_carte-1.jpg

 

6. Séisme de Thise (26/10/1828)

 

Ce séisme d'intensité 6 a produit également des dégâts dans la région bisontine et notamment à Thise et à Miserey. À Thise, des cheminées s'écroulent et l'église en reconstruction est endommagée.

 

Thise-séismes_26-10-1828_localités-1.jpg

 

Thise-séismes_26-10-1828_carte-1.jpg

 

7. Séisme de Bâle (18/10/1356)

 

Le séisme de Bâle a été violemment ressenti dans la région. À Besançon,  la Tour de Vaite ne résistera pas à la réplique survenue dans la soirée.

 

 Pour en savoir plus : Site du BRGM

 

Le tsunami qui a noyé Genève en 583

 

On peut rapprocher de ces phénomènes sismiques intéressant la région le tsunami qui a noyé Genève en 563. Cette année-là, une vague gigantesque a balayé les  rives du Léman atteignant huit mètres à Genève et treize à Lausanne selon les simulations de Katrina Kremer de l'université de Genève (décembre 2012).

Si l'existence d'un raz-de-marée en l'an 563 était déjà établie par des témoignages historiques, son origine demeurait controversée. Pour y voir plus clair, l'équipe de Katrina Kremer a sondé le lac et repéré, au plus profond, une vaste couche de sédiments - 250 millions de mètres cubes - qui se seraient déposés brutalement à cette époque. Une observation qui leur permet de conforter l'un des scénarios envisagés : l'effondrement d'un pan de la montagne dans le Rhône, en amont du lac, aurait entraîné un déplacement massif de sédiments, provoquant ainsi le tsunami. Quinze minutes après l'effondrement, la vague touchait Lausanne. Cinquante-cinq minutes plus tard, c'était au tour de Genève. Une catastrophe qui pourrait bien se reproduire, menaçant le million de riverains du lac. La cause de ce tsunami n'était donc pas un séisme, mais un glissement de terrain.

 

L'Arc jurassien sous surveillance GPS

 

Le laboratoire Chrono-environnement de l'Université de Franche-Comté est à l'origine d'un projet d'installation de six stations permanentes GPS de surveillance de l'Arc du Jura. Ces six stations seront progressivement installées au cours du second semestre 2013 et au cours de l'année 2014.

 

Les vingt séismes les plus violents en métropole depuis 1900

Le magazine Sciences et Avenir publie sur son site une carte interactive concernant les séismes les plus violents concernant la métropole depuis 1900.